先進碳材料科學與工程

《先進碳材料科學與工程》由稻垣道夫著。由於富勒烯和石墨烯分別獲得了1996年諾貝爾化學獎和2010年諾貝爾物理獎,加上1991年發現的納米炭管,引發了世界範圍內的納米科技革命。碳材料無論在科技界還是工業界都是熱點,各國投入了大量的財力物力進行研究開發。《先進碳材料科學與工程》結合作者(稻垣道夫)們在碳材料科學與工程的最新研究成果,重點介紹了碳材料的合成、表征和套用方面的新近進展,深入淺出、圖文並茂,適合於廣大讀者自學或者用作教材。

基本介紹

  • 書名:先進碳材料科學與工程
  • 作者:稻垣道夫 等
  • 出版日期:2013年12月1日
  • 語種:簡體中文, 英語
  • ISBN:9787302347170
  • 外文名:Advanced Materials Science and Engineering of Carbon
  • 出版社:清華大學出版社
  • 頁數:434頁
  • 開本:16
  • 品牌:清華大學出版社
基本介紹,內容簡介,作者簡介,圖書目錄,

基本介紹

內容簡介

《先進碳材料科學與工程》由清華大學出版社出版。

作者簡介

作者:(日本)稻垣道夫

圖書目錄

Preface
Acknowledgment
CHAPTER 1 Introduction
1.1 Classification of carbon materials
1.2 Nanotexture of carbon materials
1.3 Microtexture of carbon materials
1.4 Specification of carbon materials
1.5 Construction of the present book
References
CHAPTER 2 Carbon Nanotubes: Synthesis and Formation
2.1 Synthesis of carbon nanotubes
2.2 Formation of carbon nanotubes
2.2.1 Formation into yarns
2.2.2 Formation into sheets
2.2.3 Formation into sponges
2.3 Applications of carbon nanotubes
2.4 Concluding remarks
References
CHAPTER 3 Graphene: Synthesis and Preparation
3.1 Preparation through the cleavage of graphite
3.2 Preparation through the exfoliation of graphite
3.2.1 Preparation using graphite oxides
3.2.2 Preparation using graphite intercalation compounds
3.3 Synthesis through chemical vapor deposition
3.4 Synthesis through the organic route
3.5 Preparation through other processes
3.6 Concluding remarks
References
CHAPTER4 Carbonization Under Pressure
4.1 Carbonization under built—up pressure
4.1.1 Setup for carbonization under pressure
4.1.2 Optical texture and carbonization yield
4.1.3 Particle morphology
4.2 Carbonization under hydrothermal conditions
4.3 Carbonization under supercritical conditions
4.4 Concluding remarks
4.4.1 Temperature and pressure conditions for carbonization
4.4.2 Composition of precursors for the formation of carbon spheres
References
CHAPTER 5 Stress Graphitization
5.1 Graphitization under pressure
5.1.1 Structural change in carbons
5.1.2 Mechanism
5.2 Graphitization in coexistence with minerals under pressure
5.2.1 Coexistence with calcium compounds
5.2.2 Coexistence with other minerals
5.2.3 Mechanism for acceleration of graphitization
5.3 Stress graphitization in carbon/carbon composites
5.3.1 Acceleration of graphitization
5.3.2 Mechanism
5.4 Concluding remarks
5.4.1 Graphitization under pressure
5.4.2 Occurrence of graphite in nature
5.4.3 Stress graphitization in carbon/carbon composites
References
CHAPTER 6 Glass—like Carbon: Its Activation and Graphitization
6.1 Activation of glass—like carbon
6.1.1 Glass—like carbon spheres
6.1.2 Activation in a flow of dry air
6.1.3 Activation in a flow of wet air
6.1.4 Activation process
6.1.5 Direct observation of micropores
6.1.6 Two—step activation
6.2 Graphitization of glass—like carbons
6.2.1 Graphitization through melting
6.2.2 Graphitization under high pressure
6.2.3 Graphitization in C/C composites
6.3 Concluding remarks
References
CHAPTER 7 Template Carbonization: Morphology and Pore Control
7.1 Template carbonization for morphological control
7.1.1 Inorganic layered compounds
7.1.2 Anodic aluminum oxide films
7.1.3 Organic foams
7.2 Template carbonization for pore—structure control
7.2.1 Zeolites
7.2.2 Mesoporous silicas
7.2.3 MgO
7.2.4 Block copolymer surfactants (soft templates)
7.2.5 Metal—organic frameworks
7.2.6 Other templates
7.3 Concluding remarks
References
CHAPTER 8 Carbon Nanofibers Via Electrospinning
8.1 Carbon nanofibers synthesized via electrospinning
8.1.1 Polyacrylonitrile
8.1.2 Pitch
8.1.3 Polyimides
8.1.4 Poly(vinylidene fluoride)
8.1.5 Phenolic resins
8.2 Applications
8.2.1 Electrode materials for electrochemical capacitors
8.2.2 Anode materials for lithium—ion rechargeable batteries
8.2.3 Catalyst support
8.2.4 Composite with carbon nanotubes
8.3 Concluding remarks
8.3.1 Carbon precursors
8.3.2 Pore—structure control
8.3.3 Improvement of electrical conductivity
8.3.4 Loading of metallic species
References
CHAPTER 9 Carbon Foams
9.1 Preparation of carbon foams
9.1.1 Exfoliation and compaction of graphite
9.1.2 Blowing of carbon precursors
9.1.3 Template carbonization
9.2 Applications of carbon foams
9.2.1 Thermal energy storage
9.2.2 Electrodes
9.2.3 Adsorption
9.2.4 Other applications
9.3 Concluding remarks
References
CHAPTER 10 Nanoporous Carbon Membranes and Webs
10.1 Synthesis
10.1.1 Pyrolysis and carbonization of organic precursors
10.1.2 Templating
i0.1.3 Chemical and physical vapor deposition
10.1.4 Formation of carbon nanotubes and nanofibers
10.2 Applications
10.2.1 Adsorbents
10.2.2 Separation membranes
10.2.3 Chemical sensors and biosensors
10.2.4 Electrodes i
10.2.5 Other applications
10.3 Concluding remarks
References
CHAPTER 11 Carbon Materials for Electrochemical Capacitors
11.1 Symmetrical supercapacitors
11.1.1 Activated carbons
11.1.2 Templated carbons
11.1.3 Other carbons
11.1.4 Carbons containing foreign atoms
11.1.5 Carbon nanotubes and nanofibers
11.2 Asymmetrical supercapacitors
11.3 Asymmetrical capacitors
11.4 Carbon—coating of electrode materials
11.5 Concluding remarks
References
CHAPTER 12 Carbon Materials in Lithium—ion Rechargeable Batteries
12.1 Anode materials
12.1.1 Materials
12.1.2 Carbon coating of graphite
12.1.3 Carbon coating of Li4T15O12
12.2 Cathode materials
12.2.1 Materials
12.2.2 Carbon coating of LiFePO4
12.3 Concluding remarks
References
CHAPTER 13 Carbon Materials in Photocatalysis
13.1 TiO2—1oaded activated carbons
13.2 Mixture of activated carbon and TiO2
13.3 Carbon—doped TiO2
13.4 Carbon—coated TiO2
13.5 Synthesis of novel photocatalysts via carbon coating
13.5.1 Carbon—coated Ti O2n—1
13.5.2 Carbon—coated W18049
13.5.3 TiO2 co—modified by carbon and iron
13.6 Concluding remarks
References
CHAPTER 14 Carbon Materials for Spilled—oil Recovery
14.1 Sorption capacity for heavy oils
14.1.1 Exfoliated graphite
14.1.2 Carbonized fir fibers
14.1.3 Carbon fibers
14.1.4 Carbon nanotube sponge
14.1.5 Other carbon materials
14.2 Selectivity of sorption
14.3 Sorption kinetics
14.4 Cycle performance of carbon sorbents and heavy oils
14.5 Preliminary experiments for practical recovery of spilled heavy oils
14.5.1 Exfoliated graphite packed into a plastic bag
14.5.2 Formed exfoliated graphite
14.5.3 Heavy oil sorption from contaminated sand
14.5.4 Sorption of heavy—oil mousse
14.5.5 TiO2—1oaded exfoliated graphite
14.6 Concluding remarks
14.6.1 Comparison among carbon materials
14.6.2 Mechanism of heavy oil sorption
14.6.3 Comparison with other materials
References
CHAPTER 15 Carbon Materials for Adsorption of Molecules and Ions
15.1 Adsorption and storage of hydrogen
15.2 Adsorption and storage of methane and methane hydrate
15.3 Adsorption and storage of CO2
15.4 Adsorption of organic molecules
15.4.1 Organic gases (including VOCs)
15.4.2 Organic molecules in water
15.5 Adsorption and removal of heavy—metal ions in water
15.6 Capacitive deionization
15.7 Concluding remarks
References
CHAPTER 16 Highly Oriented Graphite with High Thermal Conductivity
16.1 Preparation
16.2 Characterization
16.3 Carbon materials with high thermal conductivity
16.3.1 Pyrolytic graphite
16.3.2 Polyimide—derived graphite
16.3.3 Natural graphite and its composites
16.3.4 Carbon fibers
16.3.5 Carbon nanotubes and graphene
16.3.6 Diamond and diarnond—like carbons
16.4 Concluding remarks
References
CHAPTER 17 Isotropic High—density Graphite and Nuclear Applications
17.1 Production
17.2 Properties
17.3 Nuclear applications
17.3.1 Fission reactors
17.3.2 Fusion reactors
17.4 Concluding remarks
References
INDEX

相關詞條

熱門詞條

聯絡我們