《偏微分方程(第1卷·第2 版)》是2014年世界圖書出版公司出版的著作,作者是[美] 泰勒(Taylor M.E.)。
基本介紹
- 書名:《偏微分方程(第1卷·第2 版)》
- 作者:[美] 泰勒(Taylor M.E.)
- 出版社:世界圖書出版公司
- 出版時間:2014-01-01
內容簡介,目錄,
內容簡介
《偏微分方程(第1卷)(第2版)》是一套3卷集經典名著,第一版曾影印出版,廣受好評。第2版新增內容312頁(3卷),這是第1卷。本卷在引入連續統力學、電磁學和複分析和實例的基礎上,介紹了許多解決實際問題的方法,如傅立葉分析、分布理論和索伯列夫空間,這些方法可用於解決線性偏微分方程的基本問題。書中涉及的線性偏微分方程有拉普拉斯方程、熱方程、波動方程、一般橢圓方程、雙曲方程和拋物方程等。目次:偏微分方程和向量場基本理論;拉普拉斯方程和波動方程;傅立葉分析、分布函式和常係數線性偏微分方程;索伯列夫空間;線性橢圓方程;線性發展方程;泛函分析概述;流形、向量叢和李群。
目錄
Contents of Volumes II and III
Preface
1Basic Theory of ODE and Vector Fields
1 The derivative
2 Fundamental local existence theorem for ODE
3 Inverse function and implicit function theorems
4 Constant-coefficientlinear systems; exponentiation of matrices
5 Variable-coefficientlinear systems of ODE: Duhamels principle
6 Dependence of solutions on initial data and on other parameters
7 Flows and vector fields
8 Lie brackets
9 Commuting flows; Frobeniuss theorem
10 Hamiltoniansystems
11 Geodesics
12 Variational problems and the stationary action principle
13 Differential forms N
14 The symplectic form and canonical transformations
15 First-order scalar nonlinear PDE
16 Completely integrable hamiltonian systems
17 Examples of integrable systems; central force problems
18 Relativistic motion
19 Topological applications of differential forms
20 Critical points and index of a vector field
A Nonsmooth vector fields
References
2 The Laplace Equation and Wave Equation
1 Vibrating strings and membranes
2 The divergence of a vector field
3The covariant derivative and divergence of tensor fields
4 The Laplace operator on a Riemannian manifold
5 The wave equation on a product manifold and energy conservation
6 Uniqueness and finite propagation speed
7 Lorentz manifolds and stress-energy tensors
8 More general hyperbolic equations; energy estimates
9 The symbol of a differential operator and a general Green-Stokes formula
10 The Hodge Laplacian on k-forms
11 Maxwells equations
References
3 FourierAnalysisDistributions and Constant-Coefficient Linear PDE
1 Fourier series
2 Harmonic functions and holomorphic functions in the plane
3 The Fourier transform
4 Distributions and tempered distributions
5 The classical evolution equations
6 Radial distributions polar coordinates and Bessel functions
7 The method ofimages and Poissons summation formula
8 Homogeneous distributions and principal value distributions
9 Elliptic operators
10 Local solvability ofconstant-coefficientPDE
11 The discrete Fourier transform
12 The fast Fourier transform
A The mighty Gaussian and the sublime gamma function
References
4 SobolevSpaces
1 Sobolev spaces on Rn
2 The complex interpolation method
3 Sobolev spaces on compact manifolds
4 Sobolev spaces on bounded domains
5 The Sobolev spaces H50(Ω)
6 The Schwartzkerneltheorem
7 Sobolev spaces on rough domains
References
5 Linear Elliptic Equations
1 Existence and regularity of solutions to the Dirichlet problem
2 The weak and strong maximum principles
3 The Dirichlet problem on the ba
4 The Riemann mapping theorem (smooth boundary)
5 The Dirichlet problem on a domain with a rough boundary
6 The Riemann mapping theorem (rough boundary)
7 The Neumann boundary problem
8 The Hodge decomposition and harmonic forms
9 Natural boundary problems for the Hodge Laplacian
10 Isothermal coordinates and conformal structures on surfaces
11 General elliptic boundary problems
12 Operator properties ofregular boundary problems
……
6 Linear Evolution Equations
A Outline of FunctionaIAnalysis
B Marufolds Vector Bundles and Lie Groups
……
Preface
1Basic Theory of ODE and Vector Fields
1 The derivative
2 Fundamental local existence theorem for ODE
3 Inverse function and implicit function theorems
4 Constant-coefficientlinear systems; exponentiation of matrices
5 Variable-coefficientlinear systems of ODE: Duhamels principle
6 Dependence of solutions on initial data and on other parameters
7 Flows and vector fields
8 Lie brackets
9 Commuting flows; Frobeniuss theorem
10 Hamiltoniansystems
11 Geodesics
12 Variational problems and the stationary action principle
13 Differential forms N
14 The symplectic form and canonical transformations
15 First-order scalar nonlinear PDE
16 Completely integrable hamiltonian systems
17 Examples of integrable systems; central force problems
18 Relativistic motion
19 Topological applications of differential forms
20 Critical points and index of a vector field
A Nonsmooth vector fields
References
2 The Laplace Equation and Wave Equation
1 Vibrating strings and membranes
2 The divergence of a vector field
3The covariant derivative and divergence of tensor fields
4 The Laplace operator on a Riemannian manifold
5 The wave equation on a product manifold and energy conservation
6 Uniqueness and finite propagation speed
7 Lorentz manifolds and stress-energy tensors
8 More general hyperbolic equations; energy estimates
9 The symbol of a differential operator and a general Green-Stokes formula
10 The Hodge Laplacian on k-forms
11 Maxwells equations
References
3 FourierAnalysisDistributions and Constant-Coefficient Linear PDE
1 Fourier series
2 Harmonic functions and holomorphic functions in the plane
3 The Fourier transform
4 Distributions and tempered distributions
5 The classical evolution equations
6 Radial distributions polar coordinates and Bessel functions
7 The method ofimages and Poissons summation formula
8 Homogeneous distributions and principal value distributions
9 Elliptic operators
10 Local solvability ofconstant-coefficientPDE
11 The discrete Fourier transform
12 The fast Fourier transform
A The mighty Gaussian and the sublime gamma function
References
4 SobolevSpaces
1 Sobolev spaces on Rn
2 The complex interpolation method
3 Sobolev spaces on compact manifolds
4 Sobolev spaces on bounded domains
5 The Sobolev spaces H50(Ω)
6 The Schwartzkerneltheorem
7 Sobolev spaces on rough domains
References
5 Linear Elliptic Equations
1 Existence and regularity of solutions to the Dirichlet problem
2 The weak and strong maximum principles
3 The Dirichlet problem on the ba
4 The Riemann mapping theorem (smooth boundary)
5 The Dirichlet problem on a domain with a rough boundary
6 The Riemann mapping theorem (rough boundary)
7 The Neumann boundary problem
8 The Hodge decomposition and harmonic forms
9 Natural boundary problems for the Hodge Laplacian
10 Isothermal coordinates and conformal structures on surfaces
11 General elliptic boundary problems
12 Operator properties ofregular boundary problems
……
6 Linear Evolution Equations
A Outline of FunctionaIAnalysis
B Marufolds Vector Bundles and Lie Groups
……