仵婷,女,畢業於紐約大學,現任北京腦科學與類腦研究中心青年學者。主要研究方向為:多模態神經界面,腦機接口,生物感測器,積體電路設計,納米電子器件製造及測試。
基本介紹
- 中文名:仵婷
- 畢業院校:紐約大學
人物經歷,研究概述,發表論文,
人物經歷
2021.9至今 北京腦科學與類腦研究中心,青年學者
2019-2021 紐約大學 神經科學中心,Dr. Roozbeh Kiani 實驗室,博士後研究員
2010-2013 中國科學院 微電子研究所,射頻/模擬積體電路工程師
研究概述
仵婷實驗室致力於以先進的納米技術為研發工具,來解決侵入式腦機接口研究中的關鍵問題。 由於侵入式神經界面具有高時空解析度等特點,該技術在基礎神經科學研究及臨床醫學中獲得了廣泛的套用和關注。然而,在活體對象實驗中(尤其是倫理監管十分嚴格的非人類靈長類動物和人類大腦),學界與產業界對於如多巴胺等神經遞質的高通量記錄技術依然缺乏。其次,儘管現有的侵入式腦機接口系統在運動恢復和輔助通信方面獲得了一些成功,但是在生物兼容性和長時穩定性方面依然面臨著巨大的挑戰。本實驗室將結合材料、器件、晶片、整合系統等多學科交叉的方式,著力聚焦於相關基礎科學研究和臨床套用,其主要未來研究方向如下:
1. 套用新材料、新結構等,開發新型的可同時記錄動作電位和神經遞質的多模態神經界面
2. 研究侵入式神經界面的生物兼容性和長時穩定性
3. 開發侵入式腦機接口的信號採集晶片及系統
發表論文
(部分)
Journal:
1. Cuniberto E, You KD, Alharbi A, Huang Z, Wu T, Kiani R, Shahrjerdi D. (2021) Anomalous sensitivity enhancement of nano-graphitic electrochemical micro-sensors with reducing the operating voltage. Biosensors and Bioelectronics. 177: 112966. DOI: 10.1016/j.bios.2021.112966
2. Cuniberto E*, Alharbi A*, Wu T, Huang Z, Sardashti K, You KD, Kisslinger K, Taniguchi T, Watanabe K, Kiani R, Shahrjerdi D. (2020) Nano-engineering the material structure of preferentially oriented nano-graphitic carbon for making high-performance electrochemical micro-sensors. Scientific Reports. 10: 9444. DOI: 10.1038/s41598-020-66408-9
3. Wu T*, Alharbi A*, Kiani R, Shahrjerdi D. (2019) Quantitative principles for precise engineering of sensitivity in graphene electrochemical sensors. Advanced Materials.31(6): e1805752. DOI: 10.1002/adma.201970037 (Cover article)
4. Wu T, Abdullah A, Takashi T, Watanabe K, Shahrjerdi D. (2018) Low-frequency noise in irradiated graphene FETs. Applied Physics Letters. 113(19): 193502. DOI: 10.1063/1.5051658 (Editor’s pick)
5. Wu T, Alharbi A, You KD, Kisslinger K, Stach EA, Shahrjerdi D. (2017) Experimental study of the detection limit in dual-gate biosensors using ultrathin silicon transistors. ACS Nano. 11(7): 7142-7147. DOI: 10.1021/acsnano.7b02986
6. Nasri B*, Wu T*, Alharbi A, You KD, Gupta M, Sebastian SP, Kiani R, Shahrjerdi D. (2017) Hybrid CMOS-graphene sensor array for subsecond dopamine detection. IEEE Transactions on Biomedical Circuits and Systems. 11(6): 1192-1203. DOI: 10.1109/TBCAS.2017.2778048 (Invited contribution to the special issue on ISSCC)
Conference:
1. Wu T, Alharbi A, Taniguchi T, Watanabe K, Shahrjerdi D. (2018) Effects of single vacancy defects on 1/f noise in graphene/h-BN FETs. IEEE Device Research Conference (DRC). DOI: 10.1109/DRC.2018.8442196
2. Nasri B, Wu T, Alharbi A, Gupta M, RanjitKumar R, Sebastian S, Wang Y, Kiani R, Shahrjerdi D. (2017) Heterogeneous integrated CMOS-graphene sensor array for dopamine detection. IEEE International Solid-State Circuits Conference (ISSCC). DOI: 10.1109/ISSCC.2017.7870364
3. Wu T, Nasri B, Alharbi A, Kiani R, Shahrjerdi D. (2017) A hybrid CMOS-graphene integrated sensing platform for subsecond dopamine detection. 232nd ECS Meeting. (Invited abstract, honoring Dr. Mark Wightman in Behavioral Neuroelectrochemistry)
4. Wu T, Afzali A, You KD, Kisslinger K, Stach E, Shahrjerdi D. (2017) Glucose sensing using dual-gated BioFETs with 5nm-thick silicon body. IEEE Device Research Conference (DRC). DOI: 10.1109/DRC.2017.7999421
5. Wu T, Nasri B, Alharbi A, Bang S, Patel A, Liu B, Kiani R, Shahrjerdi D. (2016) An integrated multi-electrode carbon microfiber sensor platform for subsecond dopamine detection. Material Research Society (MRS) Fall meeting.
6. Wu T, Rappaport TS, Collins CM. (2015) The human body and millimeter-wave wireless communication systems: interactions and implications. IEEE International Conference on Communications (ICC). DOI: 10.1109/ICC.2015.7248688 (IEEE ICC 2015 Best Paper)