介入磁共振導航為了配合術中的實時導引與監控, 需要有專門設計的快速成像序列,應滿足以下要求:(1)成像速度快;(2)穿刺針偽影大小適中,既要足夠大以易於觀察,又不能太大以免影響穿刺病灶的顯示;(3) 要保證病灶與鄰近組織間、病灶與穿刺偽影間有足夠的對比度;(4) 必須選擇理想的序列,以能顯示沿穿刺針道上的易損結構。單一序列是不可能完全滿足以上4 項要求,因此,在手術過程中,通常使用一個以上的序列。為了加快成像速度,常採取K 空間取樣步驟、平行成像技術及微波編碼數據接收技術。
目前磁共振導航的主要方式為光學導航, 該系統主要包括紅外線導航相機、定位示蹤器、配有導航光球的持針器以及導航功能軟體、手術規劃軟體等。三維動態主動跟蹤介入手術器械的位置並投射到實時顯示的磁共振圖像上是磁共振導航技術一個至關重要的優勢。手術器械固定在帶有定位標記物或微型射頻探測器的持針器上, 一般用光學或梯度方法跟蹤手術器械,通過捕獲電荷耦合的相機裝置,光學追蹤導航器械上的定位標記物(至少3 個),標定物與追蹤器械的位置、方向等信息與圖像序列信息通過計算機準確計算與處理, 使手術醫生就
磁共振引導的介入手術,主要是病理活檢、穿刺引流、腫瘤消融與近距離放化療綜合治療、詩經阻滯與損毀、頸腰間盤旋切與臭氧治療等諸多方面,手術部位涉及神經系統、呼吸系統、泌尿生殖系統、骨骼肌肉軟組織、眼球以及肺、肝、腎、前列腺等諸多器官,成功率高。具體為:
趙磊,王洋. MRI 導引與監控微創介入治療技術[J]. 醫學影像學
林征宇,武樂斌,李成利,等.光學導航介入性MR的臨床套用[J].中華放射學雜誌,2005,39(7):740—742.
F.A. Jolesz, S.M. Blumenfeld. Interventional use of magnetic resonance imaging.
Magn Reson Q, 10 (1994), pp. 85–96
J. Kettenbach, D.F. Kacher, S.K. Koskinen, etal. Interventional and intraoperative magnetic resonance imaging. Annu Rev Biomed Eng, 2 (2000), pp. 661–690
J.S. Lewin, C.A. Petersilge, S.F. Hatem, etal. Interactive MR imaging-guided biopsy and aspiration with a modified clinical C-arm system. AJR Am J Roentgenol, 170 (1998), pp. 1593–1601
R. Lufkin, L. Teresi, L. Chiu, W. Hanafee. A technique for MR-guided needle placement.AJR Am J Roentgenol, 151 (1988), pp. 193–196
R. Lufkin, L. Teresi, W. Hanafee. New needle for MR-guided aspiration cytology of the head and neck. AJR Am J Roentgenol, 149 (1987), pp. 380–382
P.R. Mueller, D.D. Stark, J.F. Simeone, etal. MR-guided aspiration biopsy: needle design and clinical trials. Radiology, 161 (1986), pp. 605–609
G. Duckwiler, R.B. Lufkin, W.N. Hanafee. MR-directed needle biopsies. Radiol Clin North Am, 27 (1989), pp. 255–263
E. vanSonnenberg, P. Hajek, V. Gylys-Morin, etal. A wire-sheath system for MR-guided biopsy and drainage: laboratory studies and experience in 10 patients. AJR Am J Roentgenol, 151 (1988), pp. 815–817
H.E. Cline, J.F. Schenck, K. Hynynen, R.D. Watkins, S.P. Souza, F.A. Jolesz. MR-guided focused ultrasound surgery. J Comput Assist Tomogr, 16 (1992), pp. 956–965
B. Quesson, J.A. de Zwart, C.T. Moonen. Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging, 12 (2000), pp. 525–533
E. Salomonowitz. MR imaging-guided biopsy and therapeutic intervention in a closed-configuration magnet: single-center series of 361 punctures. AJR Am J Roentgenol, 177 (2001), pp. 159–163
Y. Popowski, E. Hiltbrand, D. Joliat, M. Rouzaud. Open magnetic resonance imaging using titanium–zirconium needles: improved accuracy for interstitial brachytherapy implants? Int J Radiat Oncol Biol Phys, 47 (2000), pp. 759–765
J.F. Schenck, F.A. Jolesz, P.B. Roemer, etal. Superconducting open-configuration MR imaging system for image-guided therapy. Radiology, 195 (1995), pp. 805–814
D.H. Gronemeyer, R.M. Seibel, L. Kaufman. Low-field design eases MRI-guided biopsies. Diagn Imaging (San Franc), 13 (1991), pp. 139–143
R. Ojala, E. Vahala, J. Karppinen, et al. Nerve root infiltration of the first sacral root with MRI guidance. J Magn Reson Imaging, 12 (2000), pp. 556–561
Buecker, G. Adam, J.M. Neuerburg, A. Glowinski, J.J. van Vaals, R.W. Guenther. MR-guided biopsy using a T2-weighted single-shot zoom imaging sequence (Local Look technique). J Magn Reson Imaging, 8 (1998), pp. 955–959
J.L. Duerk, J.S. Lewin, D.H. Wu. Application of keyhole imaging to interventional MRI: a simulation study to predict sequence requirements.J Magn Reson Imaging, 6 (1996), pp. 918–924
G. Adam, A. Bucker, C. Nolte-Ernsting, J. Tacke, R.W. Gunther. Interventional MR imaging: percutaneous abdominal and skeletal biopsies and drainages of the abdomen.Eur Radiol, 9 (1999), pp. 1471–1478