人工智慧與機器學習

人工智慧與機器學習

《人工智慧與機器學習》是2020年1月中國人民大學出版社出版的圖書,作者是王秋月、覃雄派、趙素雲、張靜。

基本介紹

  • 書名:人工智慧與機器學習
  • 作者:王秋月、覃雄派、趙素雲、張靜
  • 出版社:中國人民大學出版社
  • 出版時間:2020年1月
  • 定價:36 元
  • ISBN:9787300275819
內容簡介,圖書目錄,
隨著計算機技術迅猛地發展,人工智慧與機器學習已經滲透到我們日常生活的各個領域。為此,中國人民大學專門為全校財經和人文專業的學生開設寒斷棵了“人工智慧與機器學習”課程,本書的所有作者都參與了該門課程的教學實踐,相互配合,總結教學經驗,共同打磨而成《人工智慧與機器學習》一書。書中通過豐富現實案例的詳細講解,引導學生了解各種機器學習模型的基本原理與實踐用法。避開了大量的數學模型和複雜編程知識腿朵拘,讓學生熟悉當下流行的一些機器學習和數據處理工具的使用,來解決現實領域遇到的各種數據分析和預測問題。
第1章人工智慧簡介
11什麼是人工智慧
12人工智慧簡史(1956年以前)
13人工智慧簡史(1956—1980年)
14人工智慧簡史(1980—2010年)
15人工智慧簡史(2010年至今)
第2章機器學習簡介
21什麼是機器學習
22機器學習分類
第3章Python簡介
31環境配置
32Python基礎墊祝臘編程
33Numpy
34Matplotlib
35Pandas
第4章K近鄰
41什麼是K近鄰
42如何度量距離或者相似性
43數據縮放
4漿姜4選擇合適的K值
45Scikitlearn KNN分類器介紹
46案例一:戒采駝艱鳶尾花分類
第5章模型選擇
51偏差與方差
52訓練集與測試集
53交叉驗證
54案例二:鳶尾花分類(案例一續)
第6章線性回歸
61什麼是線性回歸
62損失函式
63增加多項式特徵
64正則化
65超參數調優
66案例三:波士頓房價預測
第7章邏輯回歸
71什麼是邏輯回歸
72決策邊界
73損失函式
74線性回歸和邏輯回歸的異同
75多分類
76案例四:轎旬辯鐵達尼號乘客生還預測
第8章分類評價指標
82查準率與查全率、F1分數
83ROC曲線和AUC
84多分類評價指標
85案例五:鐵達尼號乘客生還預測(案例四續)
91貝葉斯定理
93不同的樸素貝葉斯模型
94文本分類
95案例六:垃圾郵件識別
101什麼是支持向量機
102核函式
103支持向量機的參數最佳化
104案例七:垃圾郵件識別(案例六續)
105總結
第11章決策樹
111什麼是決策樹
112構建決策樹
113修剪決策樹
114決策樹的優缺點和使用方法
115案例八:鐵達尼號乘客生還預測
第12章集成學習
121袋裝
122提升
123堆疊
124案例九:鐵達尼號乘客生還預測(案例八續)
第13章聚類
131什麼是聚類
132Kmeans算法
133聚類結果的評價
134不同的距離指標
135聚合式層次聚類
136案例十:商場客戶聚類
第14章深度學習
141深度學習發展簡史
142多層感知器
143損失函式
144最佳化算法:反向傳播算法
145案例十一:手寫數字識別凝拘臭懂
146深度學習技巧
148案例十二:圖像識別
第15章Kaggle競賽
151Kaggle平台簡介
152Kaggle競賽簡介
153Kaggle競賽案例分析:鐵達尼號乘客生還預測
104案例七:垃圾郵件識別(案例六續)
105總結
第11章決策樹
111什麼是決策樹
112構建決策樹
113修剪決策樹
114決策樹的優缺點和使用方法
115案例八:鐵達尼號乘客生還預測
第12章集成學習
121袋裝
122提升
123堆疊
124案例九:鐵達尼號乘客生還預測(案例八續)
第13章聚類
131什麼是聚類
132Kmeans算法
133聚類結果的評價
134不同的距離指標
135聚合式層次聚類
136案例十:商場客戶聚類
第14章深度學習
141深度學習發展簡史
142多層感知器
143損失函式
144最佳化算法:反向傳播算法
145案例十一:手寫數字識別
146深度學習技巧
148案例十二:圖像識別
第15章Kaggle競賽
151Kaggle平台簡介
152Kaggle競賽簡介
153Kaggle競賽案例分析:鐵達尼號乘客生還預測

相關詞條

熱門詞條

聯絡我們