《九章數學》即《九章算術》,在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的發展。
基本介紹
- 中文名:九章數學
- 別稱:《九章算術》
- 內容:十進位值制、今有術、盈不足術
- 作者:宋秦九韶
作品全文,作品簡介,
作品全文
宋秦九韶撰。九韶始末未詳。惟據原序自稱其籍曰魯郡。然序題淳祐七年,魯郡已久入於元。九韶蓋署其祖貫,未詳實為何許人也。是書分為九類。一曰大衍,以奇零求總數為九類之綱。二曰天時,以步氣朔晷影及五星伏見。三曰田域,以推方圓冪積。四曰測望,以推高深廣遠。五曰賦役,以均租稅力役。六曰錢穀,以權輕重出入。七曰建設,以度土功。八曰軍旅,以定行陣。九曰市易,以治交易。雖以《九章》為名,而與古《九章》門目迥別,蓋古法設其術,九韶則別其用耳。宋代諸儒,尚虛談而薄實用。數雖聖門六藝之一,亦鄙之不言,即有談數學者,亦不過推衍河洛之奇偶,於人事無關。故樂屢爭而不決,歷亦每變而愈舛,豈非算術不明,惟憑臆斷之故歟?數百年中,惟沈括究心是事,而自《夢溪筆談》以外,未有成書。九韶當宋末造,獨崛起而明絕學。其中如大衍類蓍卦發微,欲以新術改《周易揲蓍》之法,殊乖古義。古歷會稽題數既誤,且為設問以明大衍之理,初不計前後多少之歷過,尤非實據。天時類綴術推星,本非方程法,而術曰方程,復於草中多設一數以合方程行列,更為牽合。所載皆平氣平朔,凡晷影長短,五星遲疾,皆設數加減,不過得其大?,較今之定氣定朔,用三角形推算者,亦為未密。然自秦、漢以來,成法相傳,未有言其立法之意者。惟此書大衍術中所載立天元一法,能舉立法之意而言之。其用雖僅一端,而以零數推總數,足以盡奇偶和較之變,至為精妙。苟得其意而用之,凡諸法所不能得者,皆隨所用而無不通。後元郭守敬用之於弧矢,李冶用之於勾股方圓,歐邏巴新法易其名曰借根方,用之於九章八線,其源實開自九韶,亦可謂有功於算術者矣。至於田域、測望、賦役、錢穀、建設、軍旅、市易七類、皆擴充古法,取事命題,雖條目紛紜,曲折往復,不免瑕瑜互見,而其精確者居多,今即《永樂大典》所載,於其誤者正之,疏者辨之,顛倒者次第之,各加案語於下。庶得失不掩,俾算家有所稽考焉。
作品簡介
《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。
《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來的;以算術、代數為主,很少涉及圖形性質;重視套用,缺乏理論闡述等。
這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固封建制度,以及發展社會生產服務,強調數學的套用性。最後成書於東漢初年的《九章算術》,排除了戰國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合的數學問題及其解法,這與當時社會的發展情況是完全一致的。