基本介紹
- 中文名:不適定問題數值解法
- 涉及領域:工程、物理、經濟套用
- 主要領域:數學
- 作用:討論逼近問題適定性等奠定基礎
解法內容
如果某個數學問題的解對定解數據的擾動極敏感,即不是連續地依賴於定解數據,則稱該問題是不適定的。
在較長一段時間內,不適定問題被認為沒有物理背景,因而沒有引起足夠的重視。最近幾十年來,提出了不少具有實際意義的不適定問題,其數學理論和近似數值解法的研究也得到蓬勃的發展。
典型的不適定問題有:第一類運算元(積分)方程、拉普拉斯方程的初值問題、熱傳導方程逆時向的初值問題、波動方程的狄利克雷問題、求解微分方程係數的反問題等等。
不適定問題可以看為極度病態的問題。在n 維歐氏空間中考察線性方程Au=ƒ,其中A是線性運算元。設A
。可以證明,當δ→0時,‖u-uδ‖→0。
正則法的實質在於,對原不適定問題中的運算元附加一個適當的小擾動項αR,使之正則化(穩定化),即帶有擾動項的問題是適定的。在不適定問題的許多有效解法中,都以某種方式體現了這種正則化思想。