上下文有關語言

文法分類(A hierarchy of Grammars)著名語言學家Noam Chomsky定義了四類文法和四種形式語言類,文法的四種類型分別是0型、1型、2型和3型。

基本介紹

  • 中文名:上下文有關語言
  • 外文名:A hierarchy of Grammars
  • 提出者:Noam Chomsky
  • 類型:0型、1型、2型和3型
簡介,文法內容,計算性質,上下文有關語言的性質,

簡介

理論計算機科學中,上下文有關語言是可被上下文有關文法定義的形式語言。它是喬姆斯基層級中的四類文法之一。當然它在理論和實踐中都是最少使用的。

文法內容

幾類文法的差別在於對產生式施加不同的限制,分別是:
* 0型文法(短語結構文法)(phrase structure grammars):
設G =(VN,VT,P,S),如果它的每個產生式是這樣一種結構:α∈(VN∪VT)* 且至少含有一個非終結符,而β∈(VN∪VT)*,則G是一個0型文法。
* 1型文法(上下文有關文法)(context-sensitive grammars):
設G =(VN,VT,P,S)為一文法,若中的每一個產生式均滿足|β|>=|α|,僅僅α→ε除外,則文法G是1型或上下文有關的。
* 2型文法(上下文無關文法)(context-free grammars):
設G =(VN,VT,P,S),若P中的每一個產生式滿足:α是非終結符,β∈(VN∪VT)*,同時又滿足1型文法的條件,則此文法稱為2型的或上下文無關的。
* 3型文法(正規文法)(regular grammars):
設G =(VN,VT,P,S),若中的每一個產生式的形式都是A→aB或A→a,其中A和B都是非終結符,a是終結符,則G是3型文法或正規文法。
0型文法產生的語言稱為0型語言。
1型文法產生的語言稱為1型語言,也稱作上下文有關語言。
2型文法產生的語言稱為2型語言,也稱作上下文無關語言。
3型文法產生的語言稱為3型語言,也稱作正規語言。

計算性質

上下文有關語言的可計算性等價於線性有界非確定圖靈機。它是磁帶只有kn個單元的非確定圖靈機,這裡的n是輸入的大小而k是與這個機器關聯的常數。這意味著可以被這種機器判定的所有形式語言都是上下文有關語言,而所有上下文有關語言都可以被這種機器判定。
這種語言的集合也叫做NLIN-SPACE,因為它們可以在非確定圖靈機上使用線性空間來接受。類LIN-SPACE定義相同,除了使用確定圖靈機之外。。明顯的LIN-SPACENLIN-SPACE的子集,但不知道是否LIN-SPACE=NLIN-SPACE。普遍猜測它們是不相等的。

上下文有關語言的性質

  • 兩個上下文有關語言的並集、交集和串接也是上下文有關的。
  • 上下文有關語言的補集自身是上下文有關的。
  • 所有上下文無關語言都是上下文有關的。
  • 一個字元串在由任意上下文有關文法,或任何確定上下文有關文法所定義的語言中的成員關係是PSPACE-完全問題。

相關詞條

熱門詞條

聯絡我們