theory and application of information optics

theory and application of information optics

《theory and application of information optics》是2020年北京郵電大學出版社有限公司出版的圖書,作者是王仕璠。本書講述了信息光學的基礎理論及相關的套用。

基本介紹

  • 書名:theory and application of information optics
  • 作者:王仕璠
  • 出版社:北京郵電大學出版社有限公司
  • ISBN:9787563562558
內容簡介,圖書目錄,作者簡介,

內容簡介

The Chinese version of this book is revised on the basis of the Eleventh FiveYear National Planning textbook Theory and Application of Information Optics (3rd edition), which systematically introduces the basic theory and related applications of information optics. The book consists of ten chapters, including twodimensional Fourier analysis, scalar diffraction theory, frequency characteristics of optical imaging system, partial coherence theory, optical holography, spatial filtering, coherent optical processing, incoherent optical processing, application of information optics in metrology and optical communication, etc.
This book is rich in content and novel in material selection. It not only systematically introduces the basic theory, but also takes into account the current development of theory and technology, and emphasizes the combination of theory and application. The second edition of the Chinese version has been appraised as “2009 excellent textbook of general higher education” by the Ministry of Education. The third edition made a lot of revisions to second edition, overall characteristics of the original book, and has separated the problem solving part from the original book, and supplemented the thinking problems solving part, and has become an independent book. In preparation for the fourth edition of the Chinese version and its English version, the author also made a comprehensive revision of the third edition of the original book. In order to meet the needs of bilingual teaching in key universities, the author tries to make the contents of the Chinese version and the English version consistent, so as to facilitate students'reference.
The readers of this book are senior undergraduates and postgraduates majoring in optics, optical engineering, optoelectronics, optical information science and technology, applied physics, precision instruments, etc. It can also be used as a reference book for engineers and technicians of related majors.
本書是在普通高等教育“十一五”*規劃教材《信息光學理論與套用》(第3版)的基礎上修訂而成的,系統地介紹了信息光學的基礎理論及相關的套用。全書共10章,內容涉及二維傅立葉分析、標量衍射理論、光學成像系統的頻率特性、部分相干理論、光學全息照相、空間濾波、相干光學處理、非相干光學處理,以及信息光學在計量學中的套用等。
本書內容豐富,選材新穎,既系統地介紹基礎理論,又同時兼顧理論和技術的發展,並強調理論與套用的結合。《信息光學理論與套用》的第2版曾被教育部評為“2009年度普通高等教育精品教材”。第3版在保持原書總體特色的基礎上,結合作者多年的教學實踐,對第2版做了許多修訂和補充,並將其中的習題解答部分從原書中剝離出來,做了適當的添加和完善,同時補充了思考題解答,獨立成書。
在準備出版本書和英文版時,作者對第3版又做了全面的修訂,刪去了一些次要的內容,對個別章節做了適當的補充,使其更加精煉、流暢,更適合於課堂教學。同時,為了配合重點大學進行雙語教學的需要,作者力圖使中文第4版與英文版的全書內容一致,便於學生對照參考。
本書讀者對象為光學、光學工程、光電子技術、光信息科學與技術、套用物理、精密儀器等專業的高年級本科生和研究生。本書也可供相關專業的工程技術人員參考。

圖書目錄

Chapter 1Twodimensional Fourier Analysis1
1.1Frequentlyused Several Nonelementary Functions in Optics2
1.1.1Rectangle Function2
1.1.2sinc Function3
1.1.3Step Function4
1.1.4Signum Function4
1.1.5Triangle Function5
1.1.6Gaussian Function6
1.1.7Circle Function7
1.2δ Function8
1.2.1Definition of δ Function8
1.2.2Physical Meaning of δ Function10
1.2.3Properties of δ Function11
1.2.4Comb Function14
1.3Convolution15
1.3.1The Introduction of Convolution Concept15
1.3.2Definition of Convolution16
1.3.3Physical and Geometric Significance of Convolution17
1.3.4Operational Properties of Convolution18
1.3.5Examples of Convolution Operation21
1.4Correlation24
1.4.1CrossCorrelation24
1.4.2Autocorrelation25
1.4.3Operation Examples of Correlation 26
1.4.4Correlation of Finite Power Function28
1.5Basic Concept of Fourier Transform28
1.5.1Definition of Twodimensional Fourier Transform29
1.5.2The Existence Condition29
1.5.3Generalized Fourier Transform30
*1.5.4Properties of Fourier Transform of Virtual, Real, Odd and Even Functions32
1.5.5Fourier Transform as Decomposition33
1.6Basic Theorems of TwoDimensional Fourier Transform35
1.7FourierBessel Transform39
1.7.1Transform of Separable Variable Function39
1.7.2Functions with Circular Symmetry: FourierBessel Transform40
1.8Frequently Used Fourier Transform Pairs42
1.9Linear Systems and Linear Spatial Invariant Systems45
1.9.1Operator Representation of System45
1.9.2Significance of Linear System46
1.9.3Inpluse Response Function and Superposition Integral47
1.9.4Linear Spatially Invariant System(LST)Transfer Function 48
1.9.5Eigenfunction of Linear Spatially Invariant Systems50
1.9.6LSI Cascade System52
1.10TwoDimensional Sampling Theorem53
1.10.1Sampling Representation of Image Function54
1.10.2Nyquist Criterion55
1.10.3Restoration of Original Functions56
1.10.4SpaceBandwidth Product57
Emphasis of This Chapter58
Thinking Questions59
Exercises59
References in This Chapter62
Chapter 2Scalar Diffraction Theory63
2.1Introduction63
2.2Kirchhoff Diffraction Theory65
2.2.1Mathematical Preparatory Knowledge65
2.2.2Kirchhoff Formula for Planar Diffraction Screen68
2.2.3FresnelKirchhoff Diffraction Formula70
2.2.4Diffraction Formula and Superposition Integral72
2.3Frequency Domain Expression of Diffraction Law72
2.3.1Description of Diffraction Law in Frequency Domain73
2.3.2Propagation Phenomenon as a Linear Spatial Filter75
2.3.3Effect of Angular Spectrum of Diffraction Aperture76
2.4Fresnel Diffraction and Fraunhofer Diffraction77
2.4.1Preliminary Approximation Processing77
2.4.2Fresnel Approximation78
2.4.3Fraunhofer Diffraction80
2.4.4Relation Between Fraunhofer Diffraction and Fresnel Diffraction81
2.5Calculation Example of Fraunhofer Diffraction81
2.5.1Fraunhofer Diffraction of Rectangular Aperture and Single Slit82
2.5.2DoubleSlit Fraunhofer Diffraction84
2.5.3Multislit Fraunhofer Diffraction 85
2.5.4Fraunhofer Diffraction of Circular Aperture87
2.5.5Fraunhofer Diffraction of Ring Aperture89
2.5.6Fraunhofer Diffraction of Sinusoidal Amplitude Grating91
2.5.7Fraunhofer Diffraction of Sinusoidal Phase Grating94
2.6Calculation Examples of Fresnel Diffraction97
2.6.1Fourier Imaging97
2.6.2Diffraction of Diffraction Screen Illuminated by Convergent Spherical Waves99
2.7Babinet Principle of Diffraction100
Emphasis of This Chapter102
Thinking Questions103
Exercises103
References in This Chapter106
Chapter 3Frequency Characteristics of Optical Imaging Systems107
3.1Fourier Transform Properties of Lens108
3.1.1Phase Modulation of Thin Lens108
3.1.2Fourier Transform Properties of Lens111
3.1.3The Influence of Aperture of Lens115
3.2General Analysis of Optical Imaging System118
3.2.1Universal Model of Imaging System 118
3.2.2Point Spread Function of DiffractionLimited System119
3.2.3Analysis of ObjectImage Relationship in QuasiMonochrome Illumination122
3.3Transfer Function of DiffractionLimited Coherent Imaging System125
3.3.1Definition of Coherent Transfer Function(CTF)125
3.3.2Linkages Between the Coherent Transfer Function and the Physical
Properties of the System126
3.3.3Effect of Aberration on System Transfer Function127
3.3.4Calculating Examples of Coherent Transfer Function 128
3.4Transfer Function of DiffractionLimited Incoherent Imaging System131
3.4.1Optical Transfer Function(OTF) of DiffractionLimited System131
3.4.2Relationship Between OTF and CTF133
3.4.3General Properties and Significance of Optical Transfer Function133
3.4.4Calculation of OTF for DiffractionLimited System136
3.4.5Effect of Aberration on OTF139
3.5Comparison of Coherent and Incoherent Imaging Systems142
Emphasis of This Chapter146
Thinking Questions146
Exercises146
References in This Chapter149
Chapter 4Partial Coherence Theory150
4.1General Concept of Coherence of Light Field151
4.1.1Spatial Coherence and Size of Light Source151
4.1.2Temporal Coherence of Light Source and Light Wave Spectrum154
4.2CrossCoherence Function160
4.2.1Analytic SignalComplex Value Representation of Real Polychromatic Fields160
4.2.2CrossCoherence Function and Complex Coherence Degree162
4.2.3Spectral Representations of CrossCoherence Functions164
4.2.4Measurement of CrossCoherence Function and Complex Degree of
Coherence 165
4.3Interference of QuasiMonochromatic Light166
4.3.1Mutual Intensity and Complex Degree of Coherence of QuasiMonochrome
Light Field 166
4.3.2Propagation of QuasiMonochromatic Light169
Emphasis of This Chapter175
Thinking Questions175
Exercises175
References in This Chapter177
Chapter 5Optical Holography178
5.1Basic Principles of Holography178
5.1.1Recording and Reproduction of Hologram178
5.1.2Basic Theory180
5.1.3Basic Characteristics of Holography182
5.1.4Types of Holograms183
5.2Fresnel Hologram185
5.2.1Geometric Model of Elementary Hologram185
5.2.2Recording and Reproduction of Point Source Hologram186
5.2.3Several Special Cases189
5.3Holographic Recording Media192
5.3.1Basic Terminology192
5.3.2Characteristics of Holographic Recording Media192
5.3.3Several Commonly Used Holographic Recording Media198
5.4Holographic Apparatus and Experimental Notes203
5.4.1Equipments and Components Required for Holography203
5.4.2Optical Path Arrangement of Holography206
5.5Fourier Transform Hologram207
5.5.1Recording and Reproduction of Fourier Transform Hologram207
5.5.2QuasiFourier Transform Hologram209
5.5.3Lensless Fourier Transform Hologram211
5.6Image HologramRainbow Hologram213
5.6.1Image Hologram213
5.6.2Rainbow Hologram214
5.7Volume Hologram218
5.7.1Transmitted Volume Hologram218
5.7.2Reflective Volume Hologram221
5.8Embossed Hologram223
5.8.1Embossing Copy of Hologram223
5.8.2Holographic Hot Stamping Foil225
5.8.3Dynamic Lattice Hologram225
5.9Application of Holography227
5.9.1Holographic Display228
5.9.2Holographic Optical Elements230
5.9.3Holographic Information Storage234
Emphasis of This Chapter239
Thinking Questions239
Exercises240
References in This Chapter242
Chapter 6Spatial Filtering244
6.1Basic Principles of Spatial Filtering245
6.1.1Abbe Imaging Theory245
6.1.2Spatial Spectrum Analysis System246
6.1.3Spatial Frequency Filtering System249
6.1.4Fourier Analysis of Spatial Filtering252
6.2Structure Types and Application Examples of Spatial Filter256
6.2.1Spatial Filter Structure Types256
6.2.2Application Examples of Spatial Filter259
Emphasis of This Chapter264
Thinking Questions264
Exercises265
References in This Chapter267
Chapter 7Coherent Optical Processing269
7.1Image Subtraction269
7.1.1Sinusoidal Grating Method270
7.1.2Holographic Method272
7.2Matched Filtering and Optical Image Recognition273
7.2.1Significance of Spatially Matched Filter273
7.2.2Fabrication of Matched Filter273
7.2.3Image Recognition Using Matched Filter274
7.3Using Mellin Transform as Optical Correlation276
7.4Optical Correlation Using Circular Harmonic Transformation279
7.5Halftone Screen Technology281
7.5.1Production of Halftone Pictures281
7.5.2Nonlinear Processing of Image by Halftone Screen282
7.5.3Examples of Image Processing284
7.6Other Coherent Optical Processing285
7.6.1Eliminating Ambiguity with Inverse Filter285
7.6.2Optical Differentiation287
7.7Spatial Light Modulator290
7.7.1Significance and Type of Spatial Light Modulator290
7.7.2Liquid Crystal Light Valve292
Emphasis of This Chapter297
Thinking Questions297
Exercises298
References in This Chapter299
Chapter 8Incoherent Optical Processing301
8.1Comparison of Coherent and Incoherent Optical Processing301
8.2Incoherent Pocessing System Based on Geometrical Optics302
8.2.1Integral Operation of Image Product302
8.2.2Correlation and Convolution of Images303
8.2.3Bipolar Signal Processing Technology306
8.2.4Incoherent Superposition Integral Using Defocusing System306
8.3DiffractionBased Incoherent Processing-Incoherent Frequency Domain Synthesis307
8.3.1Apodisation308
8.3.2Wolter Minimum Intensity Detection Filter310
8.4White Light Information Processing311
8.4.1White Light Information Processing Principle311
8.4.2RealTime Pseudocolor Encoding Technology313
8.4.3θ Modulation Technology316
8.5Phase Modulation Pseudocolor Encoding318
8.5.1Grating Modulation318
8.5.2Bleaching Treatment319
8.5.3Filtering Demodulation319
Emphasis of This Chapter321
Thinking Questions321
Exercises321
References in This Chapter323
Chapter 9Application of Information Optics in Metrology324
9.1The Principle and Basic Method of Holographic Interferometry324
9.1.1Characteristics of Holographic Interferometry324
9.1.2Double Exposure Holographic Interferometry326
9.1.3RealTime Holographic Interferometry327
9.1.4TimeAveraged Holographic Interferometry329
9.1.5Dynamic Holographic Interferometry332
9.2Data Processing Method of Holographic Interferogram334
9.2.1Measurement of 3D Displacement Field by Double Exposure Method335
9.2.2Determination of Minute Rotations and Translations of Rigid Body338
9.2.3Measurement of Uniform Strain of Objects340
9.2.4Determination of Minute Vibration of Objects342
9.3Speckle Effect and Its Basic Statistical Characteristics344
9.3.1Speckle Intensity Distribution Function345
9.3.2Contrast of Speckle Patterns350
9.3.3Speckle Characteristic Size351
9.4Recording and Processing of Double Exposure Specklegrams353
9.4.1Recording of Double Exposure Specklegram353
9.4.2Speckle Pattern Processing Method354
9.4.3Measurement of Spatial Displacement with Double Specklegram System356
9.4.4Study of Phase Objects by Speckle Photography359
9.4.5Vibration Analysis Using TimeAveraged Speckle Pattern362
9.5Speckle Interferometry363
9.6Basic Concepts of InPlane Moire Method367
9.6.1Origin of Moire367
9.6.2Moire Effect Caused by Uniform Linear Displacement368
9.6.3Moire Effect Causaed by Pure Rotation370
9.6.4Moire Effect Caused by Coexistence of Uniform Linear Displacement and
Pure Rotation371
9.6.5Moire Moving Effect and Linear Strain Symbol Discrimination373
9.6.6Recording Optical Path of Moire374
9.6.7Projection Moire Method375
Emphasis of This Chapter377
Thinking Questions377
Exercises377
References in This Chapter377
Chapter 10Application of Information Optics in Optical Communication380
10.1Fiber Bragg Grating380
10.1.1Basic Structure of Optical Fiber381
10.1.2Dispersion in Optical Fibers385
10.1.3Recording Method of Fiber Bragg Grating386
10.1.4Application of FBG388
10.2Shaping of Ultrashort Pulse391
10.2.1Conversion From Time Frequency to Space Frequency391
10.2.2Pulse Shaping System393
10.2.3Application of Ultrashort Pulse Shaping394
10.3Array Waveguide Grating394
10.3.1Basic Structure of Array Waveguide Grating394
10.3.2Working Principle of Array Waveguide Grating396
Emphasis of This Chapter397
Thinking Questions397
Exercises397
References in This Chapter398
AppendixBessel Function Relation Table399

作者簡介

王仕璠,男,1937年生,電子科技大學教授。1961年畢業於四川大學無線電系,畢業後分配到電子科技大學任教至今。1980年4月至1982年6月,公派赴法國作訪問研究,回國後一直從事信息光學的研究和教學工作。出版過著作8種,在國內外發表論文100餘篇。1993年起享受國務院特殊津貼。先後擔任過電子科技大學套用物理系系主任、科技獎勵評審委員、四川省物理學會副理事長、四川省政府參事、成都市政協常委、中國光學學會全息與光信息處理專委會副主任等職。

相關詞條

熱門詞條

聯絡我們