材料模型
JC模型的公式是基於實驗得到的。JC模型中,流動應力(flow stress)可以表示為以下形式
Y = [A + Bε^n][1 + Clnε*][1 - T*^m] (1)
式中
Y - effectiveyield stress
ε - effective plastic strain
ε* - normalized effective plastic strain rate (typically normalized to a strain rate of 1.0 s-1)
T* -homologous temperature (單位:K)。其計算表達式為:
T*= (T - T_room)/(T_melt - T_room) (2)
其中,T_room為室溫;
T_melt為melting temperature。
A, B, C,n, m -Johnson-Cook模型五大材料物理特性常數,是定義Johnson-Cook模型的必要常數。其中,
A -Initial Yield Stress(單位:Pa);
B-Hardening Constant(單位:Pa);
C-Strain Rate Constant(無單位);
n -Hardening Exponent(無單位);
m-Thermal Softening Exponent(無單位)。
失效模型
由此材料的強度是應變、
應變率和溫度的函式。JC模型假設材料為
各向同性材料。方程(1)中的 A, B, C, n 和 m 來自實驗數據,對於大變形問題,可以假設在變形過程中,塑性功的任意百分比在變形材料中產生熱量。對於許多材料,90-100%的塑性功作為熱量在材料中散失。因此,方程(1)中使用的溫度可以根據下面的表達式從溫度上升中導出:
ΔT =[α∫σ(ε) dε]/ρc (3)
式中
ΔT - temperature increase
α - percentage of plastic work transformed to heat
c - heat capacity
ρ - density
JC材料模型的斷裂由下面的累積損壞法則導出
D = Σ (Δε/εf) (4)
式中
εf = [D1 + D2exp(D3σ*)][1+D4lnε*][1+D5T*] (5)
Δε - increment of effective plastic strain during an increment in loading
σ* - mean stress normalized by the effective stress
D1, D2, D3, D4, D5 - constants
當D = 1時發生失效。失效應變εf和損傷的累積,是平均應力、
應變率和溫度的函式。
材料 Ti-6Al-4V Titanium
A: 1098 MPa (159.246 ksi)
B: 1092 MPa (158.376 ksi)
n: 0.93
C:0.014
m:1.1
D1:-0.090
D2:0.270
D3:0.480
D4:0.014
D5:3.870
材料 2024-T3 Aluminum
A:369 MPa (53.517 ksi)
B:684 MPa (99.202 ksi)
n:0.73
C:0.0083
m:1.7
D1:0.112
D2:0.123
D3:1.500
D4:0.007
D5:0.0
數據來源:
[1] D. R. Leseur. Experimental investigations of material models for Ti-6Al-4V titanium and 2024-T3 aluminum. Tech. Rep. DOT/FAA/AR-00/25. US department of Transportation. Federal Aviation Administration. September, 2000.
[2] G. Kay. Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-Cook material model. Tech. Rep. DOT/FAA/AR-03/57. US department of Transportation, Federal Aviation Administration, September, 2003.