《Zorn's Lemma》是由Hollis Frampton執導,Rosemarie Castoro、Ginger Michels、Marcia Steinbrecher主演的一部電影。
基本介紹
- 外文名:Zorn's Lemma
- 導演:Hollis Frampton
- 主演:Rosemarie Castoro、Ginger Michels、Marcia Steinbrecher
- 上映時間:1970年9月12日
職員表
導演 |
---|
Hollis Frampton |
URL0 CODE:302
《Zorn's Lemma》是由Hollis Frampton執導,Rosemarie Castoro、Ginger Michels、Marcia Steinbrecher主演的一部電影。
導演 |
---|
Hollis Frampton |
Zorn's Lemma 《Zorn's Lemma》是由Hollis Frampton執導,Rosemarie Castoro、Ginger Michels、Marcia Steinbrecher主演的一部電影。職員表 演員表
Vitali(1905)利用它造出了[0,1]中的不可測集合;Zorn(1935)又用它證明了第一極大原理(即Zorn引理),這個原理是套用起來最方便而特別受人歡迎的;Teichmüller(1939)與Tukey(1940)又提出了第二極大原理(通常又稱為Tukey引理)。圖基引理的證明 Zorn引理如果部分序集A的每個序子集均在A中有上界,則A必含極大...
佐恩引理 《佐恩引理》是荷利斯·法朗普頓執導的電影,由Rosemarie Castoro / Ginger Michels / Marcia等主演。
不同的圖集可以在X上給出本質上相同的黎曼曲面結構;為避免這種模糊性,我們有時候要求X為極大的,也就是它不是任何一個更大的圖集的子集。根據佐恩引理(Zorn's Lemma)每個圖集A包含於一個唯一的最大圖集中。複平面C可能是最平凡的黎曼曲面了。映射f(z) = z (恆等映射)定義了C的一個圖,而 是C的一個圖集...
泛函分析所研究的大部分空間都是無窮維的。為了證明無窮維向量空間存在一組基,必須要使用佐恩引理(Zorn's Lemma)。此外,泛函分析中大部分重要定理都構建於罕-巴拿赫定理的基礎之上,而該定理本身就是選擇公理(Axiom of Choice)弱於布倫素理想定理(Boolean prime ideal theorem)的一個形式。歷史 背景 十九世紀...
不少的數學家也曾嘗試證明選擇公理,他們希望用最基本的工具來作證明,但往往在這些證明中,都用了一些並不基本的理論,例如:“良序定理”(Well-ordering Theorem)及“佐恩引理”(Zorn's Lemma),良序定理 所有集合能被良序化。換句話說,對每一個集合來說,都存在一種排序方法,使得它的所有子集都有極小...
3. Zorn's Lemma CHAPTER Ⅱ Topological Spaces 1. Open and Closed Sets 2. Connected Sets 3. Compact Spaces 4. Separation by Continuous Functions 5. Exercises CHAPTER Ⅲ Continuous Functions on Compact Sets l. The Stone-Weierstrass Theorem 2. Ideals of Continuous Functions 3. Ascoli's Theorem ...
2.6 zorn's lemma 2.7 exercises on filters 3 ultrapower construction of the hyperreals 3.1 the ring of real-valued sequences 3.2 equivalence modulo an ultrafilter 3.3 exercises on almost-everywhere agreement 3.4 a suggestive logical notation 3.5 exercises on statement values 3.6 the ...
Equivalence Relations, the Axiom of Choice, and Zorn's Lemma 1 The Real Numbers: Sets. Sequences, and Functions The Field, Positivity, and Completeness Axioms The Natural and Rational Numbers Countable and Uncountable Sets Open Sets, Closed Sets, and Borel Sets of Real Numbers Sequences of ...
Lemma Cancellation Diagrams The Novikov-Boone-Britton Theorem: Necessity of Boone's Lemma The Higman Imbedding Theorem Some Applications Epilogue APPENDIX I Some Major Algebraic Systems APPENDIX II Equivalence Relations and Equivalence Classes APPENDIX Ill Functions APPENDIX IV Zorn's Lemma APPENDIX V Coun...
Fields 141 6.1 Prime fields and extension fields 141 6.2 Algebraic and transcendental elements 145 6.3 Algebraic extensions and algebraic closure 152 6.4 Finite fields 157 Appendix A Equivalence Relations and Quotient Set 165 Appendix B Zorn’s Lemma 167 Appendix C Quotient field 169 ...
.- §1.4. Product sets, axiom of choice.- §1.5. Inverse functions.- §1.6. Equivalence relations, partitions, quotient sets.- §1.7. Order relations.- §1.8. Real numbers.- §1.9. Finite and infinite sets.- §1.10. Countable and uncountable sets.- §1.11. Zorn’s lemma, ...
Examples of bounded integral operators,The Fourier transform, Parseval's theorem and Hausdorff-Young inequality-The Hilbert transform The Laplace transform-The Hilbert-Hankel transform ……A. Riesz-Kakutani representation theorem B. Theory of distributions C. Zorn's Lemma Author Index Subject Index ...
Examples of bounded integral operators,The Fourier transform, Parseval's theorem and Hausdorff-Young inequality-The Hilbert transform The Laplace transform-The Hilbert-Hankel transform ……A. Riesz-Kakutani representation theorem B. Theory of distributions C. Zorn's Lemma Author Index Subject Index ...