Theory of relativity

Theory of relativity

《Theory of relativity》是2020年世界圖書出版公司出版的圖書。

基本介紹

  • 中文名:Theory of relativity
  • 作者:Wolfgang Pauli
  • 出版社:世界圖書出版公司
  • 出版時間:2020年
  • 開本:24 開
  • 裝幀:平裝-膠訂
  • ISBN:9787519267759
內容簡介,圖書目錄,作者簡介,

內容簡介

此書是世界圖書出版公司出版的9卷本“泡利物理學講義”中的第7卷,主題為相對論。沃爾夫岡·泡利是20世紀卓越的理論物理學家,1945年諾貝爾物理學獎得主,他在原子物理學和量子力學領域做出了重要貢獻,發現了“泡利不相容原理”,建立了“中微子”假說,提出了二分量波函式的概念和著名的泡利自旋矩陣,並在量子場論、固體物理等領域都做了很多傑出的工作。泡利去世後,他晚年的助手查爾斯·恩斯教授編輯修訂了他生前在蘇黎世聯邦理工學院的授課講義的英文版,分6卷,分別為《電動力學》《光學和電子論》《熱力學和氣體分子運動論》《統計力學》《波動力學》和《場量子化選講》,英文版由The MIT Press出版。泡利年輕的時候還寫過兩篇重要的長達數百頁的綜述長文《相對論》和《量子力學的普遍原理》,直至今日仍是相對論與量子力學領域重要的經典文獻。1921年,泡利為德國的《數學科學百科全書》撰寫了關於相對論的長篇綜述文章,愛因斯坦閱讀後評價道:“任何該領域的專家都不會相信,該文出自一個年僅21歲的青年人之手,作者在文中顯示出來的對這個領域的理解力、熟練的數學推導能力、對物理深刻的洞察力、使問題明晰的能力、系統的表述、對語言的把握、對該問題的完整處理及對其評價,使任何一個人都會感到羨慕。”1933年,泡利又為德國的《物理百科全書》撰寫了關於量子力學的長篇綜述文章,很快也成為經典。這兩篇綜述長文後來都以單行本的方式獨立出版。在泡利生命的*後一年,他又對兩書進行了全面修訂,英文版分別由Pergamon Press和Springer-Verlag再次出版。我們將這兩本書作為“泡利物理學講義”的第7卷和第8卷一起出版。1994年,Springer-Verlag又出版了同樣由泡利晚年助手查爾斯·恩斯教授編輯的《泡利物理哲學文集》,此書包含了泡利撰寫的關於空間、時間與因果性、對稱、泡利不相容原理和中微子等的21篇重在闡述科學思想與哲學的文章和演講稿。我們將此書作為“泡利物理學講義”的第9卷。這套“泡利物理學講義”對高等院校的學生與研究人員深刻理解物理原理會有極大的幫助。

圖書目錄

Preface by W. Pauli
Preface by A. Sommerfeld
Bibliography
Part 1. The Foundations of the Special Theory of Relativity
  1. Historical Background (Lorentz, Poincaré, Einstein)
  2. The Postulate of Relativity
  3. The Postulate of the Constancy of the Velocity of Light. Ritz's and Related Theories
  4. The Relativity of Simultaneity. Derivation of the Lorentz Transformation from the Two Postulates. Axiomatic Nature of the Lorentz Transformation
  5. Lorentz Contraction and Time Dilatation
  6. Einstein's Addition Theorem for Velocities and Its Application to Aberration and the Drag Coefficient. The Doppler Effect
Part 2. Mathematical Tools
  1. The Four-Dimensional Space-Time World (Minkowski)
  2. More General Transformation Groups
  3. Tensor Calculus for Affine Transformations
  4. Geometrical Meaning of the Contravariant and Covariant Components of a Vector
  5. "Surface" and "Volume" Tensors. Four-Dimensional Volumes
  6. Dual Tensors
  7. Transition to Riemannian Geometry
  8. Parallel Displacement of a Vector
  9. Geodesic Lines
  10. Space Curvature
  11. Riemannian Coordinates and Their Applications
  12. The Special Cases of Euclidean Geometry and of Constant Curvature
  13. The Integral Theorems of Gauss and Stokes in a Four-Dimensional Riemannian Manifold
  14. Derivation of Invariant Differential Operations, Using Geodesic Components
  15. Affine Tensors and Free Vectors
  16. Reality Relations
  17. Infinitesimal Coordinate Transformations and Variational Theorems
Part 3. Special Theory of Relativity. Further Elaborations
  1. Kinematics
  2. Four-Dimensional Representation of the Lorentz Transformation
  3. The Addition Theorem for Velocities
  4. Transformation Law for Acceleration. Hyperbolic Motion
  5. Electrodynamics
  6. Conservation of Charge. Four-Current Density
  7. Covariance of the Basic Equations of Electron Theory
  8. Ponderomotive Forces. Dynamics of the Electron
  9. Momentum and Energy of the Electromagnetic Field. Differential and Integral Forms of the Conservation Laws
  10. The Invariant Action Principle of Electrodynamics
  11. Applications to Special Cases
  12. Minkowski's Phenomenological Electrodynamics of Moving Bodies
  13. Electron-Theoretical Derivations
  14. Energy-Momentum Tensor and Ponderomotive Force in Phenomenological Electrodynamics. Joule Heat
  15. Applications of the Theory
  16. Mechanics and General Dynamics
  17. Equation of Motion. Momentum and Kinetic Energy
  18. Relativistic Mechanics on a Basis Independent of Electrodynamics
  19. Hamilton's Principle in Relativistic Mechanics
  20. Generalized Coordinates. Canonical Form of the Equations of Motion
  21. The Inertia of Energy
  22. General Dynamics
  23. Transformation of Energy and Momentum of a System in the Presence of External Forces
  24. Applications to Special Cases. Trouton and Noble's Experiments
  25. Hydrodynamics and Theory of Elasticity
  26. Thermodynamics and Statistical Mechanics
  27. Behaviour of the Thermodynamical Quantities Under a Lorentz Transformation
  28. The Principle of Least Action
  29. The Application of Relativity to Statistical Mechanics
  30. Special Cases
Part 4. General Theory of Relativity
  1. Historical Review, Up to Einstein's Paper of 1916
  2. General Formulation of the Principle of Equivalence. Connection Between Gravitation and Metric
  3. The Postulate of the General Covariance of the Physical Laws
  4. Simple Deductions from the Principle of Equivalence
  5. Influence of the Gravitational Field on Material Phenomena
  6. The Action Principles for Material Processes in the Presence of Gravitational Fields
  7. The Field Equations of Gravitation
  8. Derivation of the Gravitational Equations from a Variational Principle
  9. Comparison with Experiment
  10. Other Special, Rigorous, Solutions for the Statical Case
  11. Einstein's General Approximative Solution and Its Applications
  12. The Energy of the Gravitational Field
  13. Modifications of the Field Equations. Relativity of Inertia and the Space-Bounded Universe
Part 5. Theories on the Nature of Charged Elementary Particles
  1. The Electron and the Special Theory of Relativity
  2. Mie's Theory
  3. Weyl's Theory
  4. Einstein's Theory
  5. General Remarks on the Present State of the Problem of Matter
Supplementary Notes
Author Index
Subject Index

作者簡介

沃爾夫岡·泡利(Wolfgang E. Pauli),美籍奧地利科學家、物理學家,1945年諾貝爾物理學獎得主。1900年4月25日生於奧地利維也納,畢業於慕尼黑大學,1958年12月15日,在瑞士蘇黎世逝世,享年58歲。泡利在原子物理學和量子力學領域做出了重要貢獻,發現了“泡利不相容原理”,建立了“中微子”假說,提出了二分量波函式的概念和著名的泡利自旋矩陣,並在量子場論、固體物理等領域都做了很多傑出的工作。

相關詞條

熱門詞條

聯絡我們