作者簡介
Yangsheng Xu is Chair Professor and Pro-Vice Chancellor of the Chinese University of Hong Kong. He is a professor of Automation and Computer-Aided Engineering, specializing in robotics, dynamics and control, and manufacturing.
Jingyu Yan is a research associate of the Chinese University of Hong Kong, specializing in electric vehicles, battery management system, and predictive control.
Huihuan Qian is a research assistant professor of the Chinese University of Hong Kong, specializing in robotics, dynamics and control, and omni-directional vehicles.
Tin Lun Lam is a research associate of the Chinese University of Hong Kong, specializing in robotics, human-machine interface, and intelligent control.
目錄
1 Introduction; 1.1 Background; 1.2 Existing Surveillance Systems; 1.3 Book Contents; 1.4 Conclusion; 2 Background/Foreground Detection; 2.1 Introduction; 2.2 Pattern Classification Method; 2.2.1 Overview of Background Update Methods; 2.2.2 Pattern Classification-based Adaptive Background Update Method; 2.3 Frame Differencing Method; 2.4 Optical Flow Method; 2.5 Conclusion; 3 Segmentation and Tracking; 3.1 Introduction; 3.2 Segmentation; 3.3 Tracking; 3.3.1 Hybrid Tracking Method; 3.3.2 Particle Filter-based Tracking Method; 3.3.3 Local Binary Pattern-based Tracking Method; 3.4 Conclusion; 4 Behavior Analysis of Individuals; 4.1 Introduction; 4.2 Learning-based Behavior Analysis; 4.2.1 Contour-based Feature Analysis; 4.2.2 Motion-based Feature Analysis; 4.3 Rule-based Behavior Analysis; 4.4 Application: Household Surveillance Robot; 4.4.1 System Implementation; 4.4.2 Combined Surveillance with Video and Audio; 4.4.3 Experimental Results; 4.5 Conclusion; 5 Facial Analysis of Individuals; 5.1 Feature Extraction; 5.1.1 Supervised PCA for Feature Generation; 5.1.2 ICA-based Feature Extraction; 5.2 Fusion of SVM Classifiers; 5.3 System and Experiments; 5.3.1 Implementation; 5.3.2 Experiment Result; 5.4 Conclusion; 6 Behavior Analysis of Human Groups; 6.1 Introduction; 6.2 Agent Tracking and Status Analysis; 6.3 Group Analysis; 6.3.1 Queuing; 6.3.2 Gathering and Dispersing; 6.4 Experiments; 6.4.1 Multi-Agent Queuing; 6.4.2 Gathering and Dispersing; 6.5 Conclusion; 7 Static Analysis of Crowds: Human Counting and Distribution; 7.1 Blob-based Human Counting and Distribution; 7.1.1 Overview; 7.1.2 Preprocessing; 7.1.3 Input Selection; 7.1.4 Blob Learning; 7.1.5 Experiments; 7.1.6 Conclusion; 7.2 Feature-based Human Counting and Distribution; 7.2.1 Overview; 7.2.2 Initial Calibration .; 7.2.3 Density Estimation; 7.2.4 Detection of an Abnormal Density Distribution; 7.2.5 Experiment Results; 7.2.6 Conclusion; 8 Dynamic Analysis of Crowd; 8.1 Behavior Analysis of Individuals in Crowds; 8.2 Energy-based Behavior Analysis of Groups in Crowds; 8.2.1 First Video Energy; 8.2.2 Second Video Energy; 8.2.3 Third Video Energy; 8.2.4 Experiment using a Metro Surveillance System; 8.2.5 Experiment Using an ATM Surveillance System; 8.3 RANSAC-based Behavior Analysis of Groups in Crowds; 8.3.1 Random Sample Consensus (RANSAC); 8.3.2 Estimation of Crowd Flow Direction; 8.3.3 Definition of a Group in a Crowd (Crowd Group); 8.3.4 Experiment and Discussion; References; Index.