FFC劍橋法

FFC劍橋法(英語:FFC Cambridge Process)是一種將固體金屬,尤其是氧化物,置於陰極,在熔融鹽中還原成較純金屬或者合金電化學方法。FFC劍橋法被視為一種具有潛力的精煉方式,未來可能可以取代某些現有的金屬生產方式,例如長期用於精煉的克羅爾法。

基本介紹

  • 中文名:FFC劍橋法
  • 外文名:FFC Cambridge Process
  • 性質:精煉方式
  • 學科:電子工程
歷史,製程,陰極反應機轉,陽極反應機轉,

歷史

FFC劍橋法在1996、1997年間由陳政、德雷克·富雷、湯姆·法辛(Tom Farthing)三人於劍橋大學開發出來。該法之命名也是取自上述三人的姓氏字首字母。三人成功以熔融鹽電化學方法從鈦箔上的氧化鱗皮、二氧化鈦粉末燒結成的小球粒、鈦渣等含鈦物還原出純金屬鈦。注意傳統方法大多需要先將含鈦物通氯氣製成四氯化鈦,才能進行後續的還原製程。1904年德國專利150557號也有類似的製程。

製程

整個製程通常在900°C至1100°C的溫度範圍內進行,陽極實務上常以石墨碳棒製作,陰極是待還原的含鈦氧化物、含鈦物(有些研究會先以網包覆陰極,防止陰極碎裂散落),電解液則須以氯化鈣熔湯擔當,坩堝大多採用石墨材質。基於氧化物的性質,存在一相對於陽極的特定電位,影響氧化鈣在熔湯中的含量。陰極被極化至一比陽極更低之電位。藉由在兩極間施加一電壓達成兩極間電位差。當極化至更低的負電位後,陰極的氧化物傾向於對電解液釋出氧離子,氧離子進入電解液後以氧化鈣的形式存在。為維持電解液的電中性,當一氧離子離開陰極進入電解液時,另一氧離子從電解液游向陽極,故陽極採石墨電極時,可在陽極附近觀測到一氧化碳或二氧化碳生成。也因為氧離子游向陽極,惰性陽極可以用來產生氧氣。
當達到負電壓時,陰極可能開始產生鈣。鈣的還原性很高,會進一步將陰極的氧剝離,達到鈣熱還原的效果。不過,當越來越多鈣溶入氯化鈣熔湯時,熔湯電解液導電性會上升,致使電流效率降低。

陰極反應機轉

整個電-鈣熱還原反應機轉可以下式表述。
  • MOx+xCa → M +xCaO (1)
該反應自發進行時,稱之為鈣熱還原反應,或也可視為金屬熱還原(metallothermic reduction)反應的其中一例。例如,若陰極為TiO,則鈣熱還原反應的反應式可寫為
  • TiO + Ca → Ti + CaO
雖然上式這么表示,但實際上這是一個逐漸將氧從氧化物上剝離的過程。例如,陰極的二氧化鈦不會一步到位地產生鈦,而會先產生一堆中間產物如Ti3O5、Ti2O3、TiO等等低價氧化物。
鈣氧化物的電解反應化學式如下:
  • xCaO → x Ca2+ + x O2- (2a)
  • xCa2+ + 2xe-xCa (2b)
  • xO2-x/2 O2+ 2xe- (2c)
反應式(2b)顯示在陰極旁熔湯中的鈣離子Ca還原成鈣。鈣會繼續使陰極的金屬氧化物還原成金屬。
綜合反應式(1)與反應式(2),反應的淨結果可看成是金屬氧化物分解成金屬與氧氣:
  • MOx→ M +x/2 O2 (3)

陽極反應機轉

以氯化鈣熔湯作電解液非常重要,因為這種熔融鹽可以溶解並輸送O離子至陽極釋放電子。陽極反應視陽極材質有不同產物,石墨材質的陽極會產生一氧化碳二氧化碳或其他含碳混合物:
  • C + 2O2- → CO2+4e
  • C + O2- → CO + 2e
然而,陽極若是由反應性較低的材質,如高密度SnO2,則O離子傾向在陽極反應成氧氣。採取惰性陽極至少有兩項缺點,一來當熔湯中氧化鈣漸漸減少,陽極處將傾向產生氯氣,不利環保與人員安全,二來比起石墨陽極,會使製程更耗能,綜上兩點,惰性陽極會導致整個電解池不穩定。
  • 2O2- → O2+ 4e

相關詞條

熱門詞條

聯絡我們