假設條件,推導運用,模型發展,
假設條件
(一)B-S模型有5個重要的假設
(二)榮獲諾貝爾經濟學獎的B-S定價公式
C=S·N(D1)-L·E-γT·N(D2)
其中:
D1=1NSL+(γ+σ22)Tσ·T
D2=D1-σ·T
S—所交易金融資產現價
T—期權有效期
r—連續複利計無風險利率H
σ2—年度化方差
N()—常態分配變數的累積機率分布函式,在此應當說明兩點:
第一,該模型中無風險利率必須是連續複利形式。一個簡單的或不連續的無風險利率(設為r0)一般是一年複利一次,而r要求利率連續複利。r0必須轉化為r方能代入上式計算。兩者換算關係為:r=LN(1+r0)或r0=Er-1。例如r0=0.06,則r=LN(1+0.06)=0853,即100以583%的連續複利投資第二年將獲106,該結果與直接用r0=0.06計算的答案一致。
推導運用
(一)B-S模型的推導B-S模型的推導是由看漲期權入手的,對於一項看漲期權,其到期的期值是:
E[G]=E[max(ST-L,O)]
其中,E[G]—看漲期權到期期望值
ST—到期所交易金融資產的市場價值
L—期權交割(實施)價
到期有兩種可能情況:
1、如果ST>L,則期權實施以進帳(In-the-money)生效,且mAx(ST-L,O)=ST-L
2、如果ST<>
max(ST-L,O)=0
從而:
E[CT]=P×(E[ST|ST>L)+(1-P)×O=P×(E[ST|ST>L]-L)
C=P×E-rT×(E[ST|ST>L]-L)(*)這樣期權定價轉化為確定P和E[ST|ST>L]。
首先,對收益進行定義。與利率一致,收益為金融資產期權交割日市場價格(ST)與現價(S)比值的對數值,即收益=1NSTS。由假設1收益服從對數常態分配,即1NSTS~N(μT,σT2),所以E[1N(STS]=μT,STS~EN(μT,σT2)可以證明,相對價格期望值大於EμT,為:E[STS]=EμT+σT22=EμT+σ2T2=EγT從而,μT=T(γ-σ22),且有σT=σT
其次,求(ST>L)的機率P,也即求收益大於(LS)的機率。已知常態分配有性質:Pr06[ζ>χ]=1-N(χ-μσ)其中:ζ—常態分配隨機變數χ—關鍵值μ—ζ的期望值σ—ζ的標準差所以:P=Pr06[ST>1]=Pr06[1NSTS]>1NLS]=1N-1NLS2)TTNC4由對稱性:1-N(D)=N(-D)P=N1NSL+(γ-σ22)TσTArS第三,求既定ST>L下ST的期望值。因為E[ST|ST]>L]處於常態分配的L到∞範圍,所以,
E[ST|ST]>=S·EγT·N(D1)N(D2)
其中:D1=LNSL+(γ+σ22)TσTD2=LNSL+(γ-σ22)TσT=D1-σT
最後,將P、E[ST|ST]>L]代入(*)式整理得B-S定價模型:C=S·N(D1)-L·E-γT·N(D2)
(二)B-S模型套用實例
①求D1:D1=(1N164165+(0.052)+0.08412)×0.09590.29×0.0959=0.0328
②求D2:D2=0.0328-0.29×0.0959=-0.570
③查標準常態分配函式表,得:N(0.03)=0.5120 N(-0.06)=0.4761
④求C:C=164×0.5120-165×E-0.0521×0.0959×0.4761=5.803
(三)看跌期權定價公式的推導
B-S模型是看漲期權的定價公式,根據售出—購進平價理論(Put-callparity)可以推導出有效期權的定價模型,由售出—購進平價理論,購買某股票和該股票看跌期權的組合與購買該股票同等條件下的看漲期權和以期權交割價為面值的無風險折扣發行債券具有同等價值,以公式表示為:
S+PE(S,T,L)=CE(S,T,L)+L(1+γ)-T
移項得:PE(S,T,L)=CE(S,T,L)+L(1+γ)-T-S,將B-S模型代入整理得:P=L·E-γT·[1-N(D2)]-S[1-N(D1)]此即為看跌期權初始價格定價模型。
模型發展
(一)存在已知的不連續紅利假設某股票在期權有效期內某時間T(即除息日)支付已知紅利DT,只需將該紅利現值從股票現價S中除去,將調整後的股票價值S′代入B-S模型中即可:S′=S-DT·E-rT。如果在有效期記憶體在其它所得,依該法一一減去。從而將B-S模型變型得新公式:
C=(S-·E-γT·N(D1)-L·E-γT·N(D2)