高爾斯

高爾斯是英國數學家,1982年進入劍橋大學攻讀, 其後在劍橋讀研究生,在匈牙利組合數學家博洛巴什(B.Bolloas)指導下,於199O年獲博 士學位。1989—1993年任劍橋大學三一學院研究員,1991—1995年間在倫敦大學學院任教 ,1995年回到劍橋大學,在純粹數學與數理統計系任教,同時兼任三一學院研究員。他是 英國皇家學會會員。

基本介紹

  • 中文名:高爾斯
  • 性別:男
  • 國籍:英國
  • 出生年月:1963年11月20日
  • 職業:科學 數學家
  • 畢業院校:劍橋大學
簡介,生平,

簡介

高爾斯是英國數學家,1982年進入劍橋大學攻讀, 其後在劍橋讀研究生,在匈牙利組合數學家博洛巴什(B.Bolloas)指導下,於199O年獲博 士學位。1989—1993年任劍橋大學三一學院研究員,1991—1995年間在倫敦大學學院任教 ,1995年回到劍橋大學,在純粹數學與數理統計系任教,同時兼任三一學院研究員。他是英國皇家學會會員。

生平

高爾斯的重要貢獻在巴拿赫空間理論。用他1995年獲得懷特海Whitehead)獎時的評語說:他在過去五年中使得巴拿赫空間的幾何完全改變了面貌。
巴拿赫空間理論是192O年由 波蘭數學家巴拿赫(S.Banach)一手創立的,數學分析中常用的許多空間都是巴拿赫空間及 其推廣,它們有許多重要的套用。但從那時起,遺留下許多基本問題有待解決,特別是與 超平面定理和施洛德—伯恩斯坦(Schroder-Bernstein)定理有關的問題,它們並不難懂, 可以看成康托爾(G.Cantor)無窮集合論到無窮維空間的推廣。大多數巴拿赫空間是無窮維空間,可看成通常向量空間的無窮維推廣。因此,康托爾發現的關於無窮集合的兩個定理是否對無窮維空間也成立,自然成為大家關注的問題。 第一個是無窮集一定與其一個子集同勢(即一一對應或等價),相應的巴拿赫空間定 理就是任何巴拿赫空間一定同它的超平面同構?而施洛德-伯恩斯坦定理是,如果X與Y的一 個真子集同勢,Y與X的一真子集同勢,則X與Y同勢,相應的定理是,加工是Y的有補子空間,Y是X的有補子空間,則X與Y同構。高爾斯對這兩種情形都舉出反例,從而否定地解決了這些基本問題。 高爾斯證明了一系列基本定理,例如,如果所有無窮維閉子空間都同構,則它是希爾伯特空間;發現了所謂高爾斯二分法定理:任何無窮維巴拿赫空間不是包含具有無條件基 的子空間,就是包含一個子空間,其上每個運算元都是指標為0的弗雷德霍姆(Fredholm)算 子。他的貢獻還在於獨特創新的方法——無窮的拉姆齊(Ramsey)理論。並不難懂,可以看 成康托爾(G.Cantor)無窮集合論到無窮維空間的推廣。大多數巴拿赫空間是無窮維空間 ,可看成通常向量空間的無窮維推廣。因此,康托爾發現的關於無窮集合的兩個定理是否 對無窮維空間也成立,自然成為大家關注的問題。 第一個是無窮集一定與其一個子集同勢(即一一對應或等價),相應的巴拿赫空間定 理就是任何巴拿赫空間一定同它的超平面同構?而施洛德-伯恩斯坦定理是,如果X與Y的一 個真子集同勢,Y與X的一真子集同勢,則X與Y同勢,相應的定理是,加工是Y的有補子空間 ,Y是X的有補子空間,則X與Y同構。高爾斯對這兩種情形都舉出反例,從而否定地解決了 這些基本問題。
高爾斯證明了一系列基本定理,例如,如果所有無窮維閉子空間都同構,則它是希爾 伯特空間;發現了所謂高爾斯二分法定理:任何無窮維巴拿赫空間不是包含具有無條件基 的子空間,就是包含一個子空間,其上每個運算元都是指標為0的弗雷德霍姆(Fredholm)算 子。他的貢獻還在於獨特創新的方法——無窮的拉姆齊(Ramsey)理論。

相關詞條

熱門詞條

聯絡我們