韓渭敏,男,美國愛荷華大學套用數學與計算科學跨學科博士培養基地(AMCS)主任。
基本介紹
- 中文名:韓渭敏
- 國籍:中國
- 職業:教師
- 職務:美國愛荷華大學套用數學與計算科學跨學科博士培養基地(AMCS)主任
- 職稱:教授
研究領域,人物經歷,科研項目,科研成果,
研究領域
套用數學, 計算數學。
人物經歷
1991.8-1996.7 美國愛荷華大學助教(Assistant Professor)
1996.8-1999.7 美國愛荷華大學副教授(Associate Professor)
1999.8月至今美國愛荷華大學教授(Professor)
2005-2007 美國愛荷華大學數學系副系主任
2007年至今美國愛荷華大學套用數學與計算科學跨學科博士培養基地(AMCS)主任
科研項目
1. 美國 NSF, Hemivariational Inequalities: Numerical Methods and Applications, August 1, 2015 - July 31, 2018.
2. 波蘭Maestro Project of the National Science Center of Poland, Nonsmooth Systems in Mathematical Theory of Contact Mechanics, April 18, 2013 - April 17, 2018.
3. 歐洲Marie Curie Actions---International Research Staff Exchange Scheme (IRSES), Nonlinear Inclusions, Hemivariational Inequalities with Applications to Contact Mechanics, April 1, 2012 - March 31, 2016.
4. 美國Simons Foundation, Analysis, Approximation and Numerical Simulations in Optical Imaging, July 1, 2011 - August 31, 2016.
科研成果
1.F. Jing, W. Han, W. Yan, and F. Wang, Discontinuous Galerkin finite element methods for a stationary Navier-Stokes problem with a nonlinear slip boundary condition of friction type, Journal of Scientific Computing, 76 (2018), 888-912.
2.W. Han, M. Sofonea, and D. Danan, Numerical analysis of stationary variational-hemivariational inequalities, Numer. Math., 139 (2018), 563-592.
3.M. Sofonea, S. Migorski, and W. Han, A penalty method for history-dependent variational-hemivariational inequalities, Computers and Mathematics with Applications, 75 (2018), 2561-2573.
4.F. Wang, J. Eichholz, and W. Han, A two level algorithm for an obstacle problem, Applied Mathematics and Computation, 330 (2018), 65-76.
5.Y. Zhang, J. Gao, J. Peng, and W. Han, A robust method of computing finite difference coefficients based on Vandermonde matrix, Journal of Applied Geophysics, 152 (2018), 110-117.
6.W. Han, Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics, Mathematics and Mechanics of Solids, 23 (2018), 279-293.
7.R.F. Gong, X.L. Cheng, and W. Han, A homotopy method for bioluminescence tomography, Inverse Problems in Science & Engineering, 26 (2018), 398-421.
8.K. Czuprynski and W. Han, Energy dependent radiative transfer equation and energy discretization, Journal of Computational and Applied Mathematics, 323 (2017), 147-158.
9.J. Gao, B. Zhang, W. Han, J. Peng, and Z. Xu, A new approach for extracting the amplitude spectrum of the seismic wavelet from the seismic traces, Inverse Problems, 33 (2017), 085005 (16pp).
10.W. Han, M. Sofonea, and M. Barboteu, Numerical analysis of elliptic hemivariational inequalities, SIAM J. Numer. Anal., 55 (2017), 640-663.
11.M. Barboteu, K. Bartosz, and W. Han, Numerical analysis of an evolutionary variational--hemivariational inequality with application in contact mechanics, Computer Methods in Applied Mechanics and Engineering, 318 (2017), 882--897.
12.R.F. Gong, X.L. Cheng, and W. Han, A coupled complex boundary method for an inverse conductivity problem with one measurement, Applicable Analysis, 96 (2017), 869-885.
13.J. Tang, B. Han, W. Han, B. Bi, and L. Li, Mixed total variation and L^1 regularization method for optical tomography based on radiative transfer equation, Computational and Mathematical Methods in Medicine, 2017 (2017), Article ID 2953560, 15 pages.
14.W. Han, S. Migorski, and M. Sofonea, Analysis of a general dynamic history-dependent variational-hemivariational inequality, Nonlinear Analysis: Real World Applications, 36 (2017), 69-88.