《非線性振動、動力學系統和矢量場的分叉》是2018年世界圖書出版公司出版的著作,作者是[美] J.古肯海默,P.霍姆斯。
基本介紹
- 中文名:非線性振動、動力學系統和矢量場的分叉
- 作者:[美] J.古肯海默,P.霍姆斯
- 出版時間:2018年01月01日
- 出版社:世界圖書出版公司
- ISBN:9787519226176
- 定價:世界圖書出版公司
- 開本:16 開
- 裝幀:平裝
內容簡介,作者簡介,目錄,
內容簡介
本書是論述動力學系統、分叉理論與非線性振動研究之間接口部分的理論專著,主要討論以歐氏空間微分流形為相空間,以及常微分方程組和映象集為數學模型的問題。本書初版於1983年,本版是2002第7次修訂版,該書出版三十餘年來倍受讀者歡迎,是混沌動力學的經典教材。
作者簡介
John. Guckenheimer(J.古肯海默)是美國康奈爾大學數學系教授,Philip. Holmes(P.霍姆斯)是美國普林斯頓大學教授。
目錄
CHAPTER 1
Introduction: Differential Equations and Dynamical Systems
1.1 Existence and Uniqueness of Solutions
1.1 The Linear System x = Ax
1.2 Flows and Invariant Subspaces
1.3 The Nonlinear System x = f (x)
1.4 Linear and Nonlinear Maps
1.5 Closed Orbits, Poincare Maps.and Forced Oscillations
1.6 Asymptotic Behavior
1.7 Equivalence Relations and Structural Stability
1.8 Two-Dimensional Flows
1.9 Peixoto's Theorem for Two-Dimensional Flows
CHAPTER 2
An Introduction to Chaos: Four Examples
2.1 Van der Pol's Equation
2.2 Duffing's Equaiion
2.3 The Lorenz Equations
2.4 The Dynamics of a Bouncing Ball
2.5 Conclusions: The Moral of the Tales
CHAPTER 3
Local Bifurcations
3.1 BiFurcation Problems
3.2 Center Manifolds
3.3 Normal Forms
3.4 Codimension One Bifurcations of Equilibria
3.5 Codimension One Bifurcations of Maps and Periodic Orbits
CHAPTER 4
Averaging and Perturbation from a Geometric Viewpoint
4.1 Averaging and Poincare Maps
4.2 Examples of Averaging
4.3 Averaging and Local Bifurcations
4.4 Averaging, Hamikonian Systems, and Global Behavior: Cautionary Notes
4.5 Melnikov's Method: Perturbations of Planar Homoclinic Orbits
4.6 Melnikov's Method: Perturbations of Hamiltonian Systems and Subharmonic Orbits
4.7 Stability or Subharmonic Orbits
4.8 Two Degree of Freedom Hamiltonians and Area Preserving Maps of the Plane
CHAPTER 5
Hyperbolic Sets, Symbolic Dynamics, and Strange Attractors
5.0 Introduction
5.1 The Smale Horseshoe: An Example of a Hyperbolic Limit Set
5.2 Invariant Sets and Hyperbolicity
5.3 Markov Partitions and Symbolic Dynamics
5.4 Strange Auractors and the Stability Dogma
5.5 Structurally Stable Attractors
5.6 One-Dimensional Evidence for Strange Attractors
5.7 The Geometric Lorenz Attractor
5.8 Statistical Properties: Dimension, Entropy, and Liapunov Exponents
CHAPTER 6
Global Bifurcations
6.1 Saddle Connections
6.2 Rotation Numbers
6.3 Bifurcations or One-Dimensional Maps
6.4 The Lorenz Bifurcations
6.5 Homoclinic Orbits in Three-Dimensional Flows: Silnikov's Example
6.6 Homoclinic aifurcations of Periodic Orbits
6.7 Wild Hyperbolic Sets
68 Renormalization and Universality
CHAPTER 7
Local Codimension Two Bifurcations of Flows
7.1 Degeneracy in Higher-Order Terms
7.2 A Note on k-Jets and Determinacy
7.3 The Double Zero Eigenvalue
7.4 A Pure Imaginary Pair and a Simple Zero Eigenvalue
7.5 Two Pure Imaginary Pairs of Eigenvalues without Resonance
7.6 Applicaiions to Large Systems
APPENDIX
Suggestions for Further Reading
Postscript Added at Second Printing
Glossary
References
Index