簡介
電腦主頻率是指計算機的CPU的單位時間內發出的脈衝數。
脈衝是一種特殊的電壓或電流變化。其特點是電流或電壓在有限的時間內呈上升、衰減、間歇式的變化,可有突變及不連續的特點。脈衝波形的種類很多,可用脈衝的幅度、寬度及頻率表示。電腦主頻率決定計算機的運行速度,隨著計算機的發展,主頻由過去MHz發展到了當前的GHz。通常來講,在同系列
微處理器,主頻越高就代表計算機的速度也越快,但對於不同類型的處理器,它就只能作為一個參數來作參考。電腦主頻率還和
倍頻與
外頻這兩個概念有關。主頻、外頻、倍頻,其關係式:主頻=外頻×倍頻。
有關術語
時鐘頻率
時鐘頻率(clock rate)是指同步電路中時鐘的基礎頻率,它以“每秒時鐘周期”(clock cycles per second)來度量,量度單位採用單位赫茲(Hz)。例如,來自晶振的基準頻率通常等於一個固定的正弦波形,則時鐘頻率就是這個基準頻率,電子電路會為數字電子設備將它轉化成對應的脈衝方波。需要補充一點的是,“速度”作為矢量不應與標量“頻率”相混淆,所以使用“時鐘速度”來描述這個概念是用詞不當的。
外頻
外頻也叫CPU外部頻率或基頻,計量單位為“MHz“。CPU的主頻與外頻有一定的比例(倍頻)關係,由於記憶體和設定在主機板上的L2Cache的工作頻率與CPU外頻同步,所以使用外頻高的CPU組裝電腦,其整體性能比使用相同主頻但外頻低一級的CPU要高。這項參數關係試用於主機板的選擇。
倍頻係數
倍頻係數是CPU主頻和外頻之間的比例關係,一般為:主頻=外頻*倍頻。Intel公司所有CPU(少數測試產品例外)的倍頻 通常已被鎖定(鎖頻),用戶無法用調整倍頻的方法來調整CPU的主頻,但仍然可以通過調整外頻為設定不同的主頻。
記憶體主頻
記憶體主頻和CPU主頻一樣,習慣上被用來表示記憶體的速度,它代表著該記憶體所能達到的最高工作頻率。記憶體主頻是以MHz(兆赫)為單位來計量的。記憶體主頻越高在一定程度上代表著記憶體所能達到的速度越快。記憶體主頻決定著該記憶體最高能在什麼樣的頻率正常工作。目前較為主流的記憶體規格是DDR3,這種規格的記憶體比較常見的頻率有1333MHz和1600MHz兩種。
大家知道,計算機系統的時鐘速度是以頻率來衡量的。晶體振盪器控制著時鐘速度,在石英晶片上加上電壓,其就以正弦波的形式震動起來,這一震動可以通過晶片的形變和大小記錄下來。晶體的震動以正弦調和變化的電流的形式表現出來,這一變化的電流就是時鐘信號。而記憶體本身並不具備晶體振盪器,因此記憶體工作時的時鐘信號是由主機板晶片組的
北橋或直接由主機板的時鐘發生器提供的,也就是說記憶體無法決定自身的工作頻率,其實際工作頻率是由主機板來決定的。
DDR記憶體和DDR2記憶體和DDR3的記憶體的頻率可以用工作頻率和等效頻率兩種方式表示,工作頻率是記憶體顆粒實際的工作頻率,但是由於DDR記憶體可以在
脈衝的上升和下降沿都傳輸數據,因此傳輸數據的等效頻率是工作頻率的兩倍;而DDR2記憶體和DDR3記憶體每個時鐘能夠以四倍於工作頻率的速度讀/寫數據,因此傳輸數據的等效頻率是工作頻率的四倍。例如DDR 200/266/333/400的工作頻率分別是100/133/166/200MHz,而等效頻率分別是200/266/333/400MHz;DDR2 400/533/667/800的工作頻率分別是100/133/166/200MHz,而等效頻率分別是400/533/667/800MHz;DDR31066/1333/1600/1800/2000的工作頻率分別是266/333/400/450/500MHZ,而等效頻率分別是1066/1333/1600/1800/2000MHZ。
記憶體異步工作模式包含多種意義,在廣義上凡是記憶體工作頻率與CPU的外頻不一致時都可以稱為記憶體異步工作模式。首先,最早的記憶體異步工作模式出現在早期的主機板晶片組中,可以使記憶體工作在比
CPU外頻高33MHz或者低33MHz的模式下(注意只是簡單相差33MHz),從而可以提高系統記憶體性能或者使老記憶體繼續發揮餘熱。其次,在正常的工作模式(CPU不超頻)下,不少主機板晶片組也支持記憶體異步工作模式,例如Intel 910GL晶片組,僅僅只支持533MHz FSB即133MHz的CPU外頻,但卻可以搭配工作頻率為133MHz的DDR 266、工作頻率為166MHz的DDR 333和工作頻率為200MHz的DDR 400正常工作(注意此時其CPU外頻133MHz與DDR 400的工作頻率200MHz已經相差66MHz了),只不過搭配不同的記憶體其性能有差異罷了。再次,在
CPU超頻的情況下,為了不使記憶體拖CPU超頻能力的後腿,此時可以調低記憶體的工作頻率以便於超頻,例如AMD的Socket 939接口的Opteron 144非常容易超頻,不少產品的外頻都可以輕鬆超上300MHz,而此如果在記憶體同步的工作模式下,此時記憶體的等效頻率將高達DDR 600,這顯然是不可能的,為了順利超上300MHz外頻,我們可以在超頻前在主機板BIOS中把記憶體設定為DDR 333或DDR 266,在超上300MHz外頻之後,前者也不過才DDR 500(某些極品記憶體可以達到),而後者更是只有DDR 400(完全是正常的標準頻率),由此可見,正確設定記憶體異步模式有助於超頻成功。
主機板晶片組幾乎都支持記憶體異步,英特爾公司從810系列到較新的875系列都支持,而威盛公司則從693晶片組以後全部都提供了此功能在。
超頻
概述
電腦的超頻就是通過人為的方式將CPU、顯示卡等硬體的工作頻率提高(實際就是提高電壓),讓它們在高於其額定的頻率狀態下穩定工作。以Intel P4C2.4GHz的CPU為例,它的額定工作頻率是2.4GHz,如果將工作頻率提高到2.6GHz,系統仍然可以穩定運行,那這次超頻就成功了。
CPU超頻的主要目的是為了提高CPU的工作頻率,也就是CPU的主頻。而CPU的主頻又是外頻和倍頻的乘積。例如一塊CPU的外頻為100MHz,倍頻為8.5,可以計算得到它的主頻=外頻×倍頻=100MHz×8.5 = 850MHz。
提升CPU的主頻可以通過改變CPU的倍頻或者外頻來實現。但如果使用的是Intel CPU,你盡可以忽略倍頻,因為IntelCPU使用了特殊的製造工藝來阻止修改倍頻。AMD的CPU可以修改倍頻,但修改倍頻對CPU性能的提升不如外頻好。
而外頻的速度通常與前端匯流排、記憶體的速可能度緊密關聯。因此當你提升了CPU外頻之後,CPU、系統和記憶體的性能也可能同時提升了。
方式
CPU超頻主要有兩種方式:一個是硬體設定,一個是軟體設定。其中硬體設定比較常用,它又分為跳線設定和BIOS設定兩種。
跳線設定超頻
早期的主機板多數採用了跳線或DIP開關設定的方式來進行超頻。在這些跳線和DIP開關的附近,主機板上往往印有一些表格,記載的就是跳線和DIP開關組合定義的功能。在關機狀態下,你就可以按照表格中的頻率進行設定。重新開機後,如果電腦正常啟動並可穩定運行就說明超頻成功了。
比如一款配合
賽揚1.7GHz使用的Intel845D晶片組主機板,它就採用了跳線超頻的方式。在電感線圈的下面,可以看到跳線的說明表格,當跳線設定為1-2的方式時外頻為100MHz,而改成2-3的方式時,外頻就提升到了133MHz。而賽揚1.7GHz的默認外頻就是100MHz,只要將外頻提升為133MHz,原有的賽揚1.7GHz就會超頻到2.2GHz上工作,是不是很簡單呢。
另一塊配合AMD CPU使用的VIAKT266晶片組主機板,採用了DIP開關設定的方式來設定CPU的倍頻。多數AMD的倍頻都沒有鎖定,所以可以通過修改倍頻來進行超頻。這是一個五組的DIP開關,通過各序號開關的不同通斷狀態可以組合形成十幾種模式。在DIP開關的右上方印有說明表,說明了DIP開關在不同的組合方式下所帶來不同頻率的改變。
BIOS設定超頻
主流主機板基本上都放棄了跳線設定和DIP開關的設定方式更改
CPU倍頻或
外頻,而是使用更方便的BIOS設定。
例如升技(Abit)的SoftMenuIII和磐正(EPOX)的PowerBIOS等都屬於BIOS超頻的方式,在CPU參數設定中就可以進行CPU的倍頻、外頻的設定。如果遇到超頻後電腦無法正常啟動的狀況,只要關機並按住INS或HOME鍵,重新開機,電腦會自動恢復為CPU默認的
工作狀態,所以還是在BIOS中超頻比較好。
這裡就以升技NF7主機板和Athlon XP 1800+ CPU的組合方案來實現這次超頻實戰。市場上BIOS的品牌主要有兩種,一種是PHOENIX-Award BIOS,另一種是AMI BIOS,這裡以Award BIOS為例。
首先啟動電腦,按DEL鍵進入主機板的BIOS設定界面。從BIOS中選擇Soft Menu III Setup,這便是升技主機板的SoftMenu超頻功能。
進入該功能後,可以看到系統自動識別CPU為1800+。要在此處回車,將默認識別的型號改為User Define(手動設定)模式。設定為手動模式之後,原有灰色不可選的CPU外頻和倍頻就變成了可選的狀態。
如果你需要使用提升外頻來超頻的話,就在External Clock:133MHz這裡回車。這裡有很多外頻可供調節,你可以把它調到150MHz或更高的頻率選項上。由於升高外頻會使系統匯流排頻率提高,影響其它設備工作的穩定性,因此一定要採用鎖定PCI頻率的辦法。
Multiplier Factor一項便是調節CPU倍頻的地方,回車後進入選項區,可以根據CPU的實際情況來選擇倍頻,例如12.5、13.5或更高的倍頻。
在BIOS中可以設定和調節CPU的核心電壓。正常的情況下可以選擇Default(默認)狀態。如果CPU超頻後系統不穩定,就可以給CPU核心加電壓。但是加電壓的副作用很大,首先CPU
發熱量會增大,其次電壓加得過高很容易燒毀CPU,所以加電壓時一定要慎重,一般以0.025V、0.05V或者0.1V
步進向上加就可以了。
用軟體實現超頻
顧名思義,就是通過軟體來超頻。這種超頻更簡單,它的特點是設定的頻率在關機或重新啟動電腦後會復原,菜鳥如果不敢一次實現硬體設定超頻,可以先用軟體超頻試驗一下超頻效果。最常見的超頻軟體包括SoftFSB和各主機板廠商自己開發的軟體。它們原理都大同小異,都是通過控制時鐘發生器的頻率來達到超頻的目的。
SoftFSB是一款比較通用的軟體,它可以支持幾十種時鐘發生器。只要按主機板上採用的時鐘發生器型號進行選擇後,點擊GETFSB獲得時鐘發生器的控制權,之後就可以通過頻率拉桿來進行超頻的設定了,選定之後按下保存就可以讓CPU按新設定的頻率開始工作了。不過軟體超頻的缺點就是當你設定的頻率讓CPU無法承受的時候,在你點擊保存的那一剎那導致
當機或
系統崩潰。
限制
在一個時鐘脈衝後,CPU的信號線需要時間穩定它的新狀態。如果上一個脈衝的信號還沒有處理完成,而下一個時鐘脈衝來的太快(在所有信號線完成從0到1或者從1到0的轉換前),就會產生錯誤的結果。晶片製造商制定了“最高時鐘頻率”的規範,並且在出售晶片之前對它們進行測試確保它們匹配“最高時鐘頻率”的規範。測試將執行最複雜的指令,處理最複雜的數據模型確定使用的最長處理時間(測試在最合適的電壓和穩定保證CPU在最低性能下運行),保證最高時鐘頻率時不會發生衝突。
當信號線從1轉換到0狀態(也可以是0轉換到1狀態)時,將會浪費部分能量使之轉換為熱能(主要是內部驅動電晶體)。當CPU執行複雜指令,由此進行大量的1狀態0狀態之間的互相轉換時,更高的時鐘頻率將產生更多的熱量。如果產生的熱量不能被散熱系統及時帶走,電晶體將可能因此過熱損壞。