《電漿物理導論——空間和實驗室套用(英文影印版)》重點講述基礎電漿理論,以及空間和實驗室電漿的套用,內容涵蓋單粒子運動、動理學、磁動力學、冷或熱電漿的小振幅波、非線性現象和碰撞效應等內容。討論了行星磁層和輻射帶、在聚變設備中的電漿的穩定和囚禁、太陽風中不連續和衝擊波的傳播等套用。 《電漿物理導論——空間和實驗室套用(英文影印版)》適合電漿物理領域的研究者、研究生和高年級本科生閱讀。
基本介紹
- 書名:電漿物理導論:空間和實驗室套用
- 作者:格尼特 (D.A.Gurnett)
- 出版社:北京大學出版社
- 頁數:452頁
- 開本:16
- 品牌:北京大學出版社
- 外文名:Introduction to Plasma Physics:with Space and LabOratory Appllcations
- 類型:科學與自然
- 出版日期:2014年8月1日
- 語種:簡體中文, 英語
- ISBN:9787301245491
基本介紹,內容簡介,作者簡介,圖書目錄,
基本介紹
內容簡介
《電漿物理導論——空間和實驗室套用(英文影印版)》為影印版學術專著,原書由劍橋大學出版社於2005年出版。電漿物理是發展迅速的研究領域,其套用也已經非常廣泛。本書由此領域國際著名專家寫成,系統而深入地講解了電漿物理的各種套用。對於電漿物理,乃至相關的各各學科的讀者來說,本書都是不可多得的佳作。
作者簡介
(美)格尼特(D. A. Gurnett)、(美)巴塔查爾吉,美國愛荷華大學教授。
圖書目錄
Preface page ix
1 Introduction 1
2 Characteristic parameters of a plasma 5
2.1 Number density and temperature 5
2.2 Debye length 7
2.3 Plasma frequency 10
2.4 Cyclotron frequency 12
2.5 Collision frequency 13
2.6 Number of electrons per Debye cube 15
2.7 The de Broglie wavelength and quantum effects 17
2.8 Representative plasma parameters 18
3 Single particle motions 23
3.1 Motion in a static uniform magnetic field 23
3.2 Motion in perpendicular electric and magnetic fields 26
3.3 Gradient and curvature drifts 32
3.4 Motion in a magnetic mirror field 39
3.5 Motion in a time varying magnetic field 45
3.6 Adiabatic invariants 48
3.7 The Hamiltonian method 60
3.8 Chaotic orbits 68
4 Waves in a cold plasma 75
4.1 Fourier representation of waves 75
4.2 General form of the dispersion relation 84
4.3 Waves in a cold uniform unmagnetized plasma 87
4.4 Waves in a cold uniform magnetized plasma 94
4.5 Ray paths in inhomogeneous plasmas 127
5 Kinetic theory and the moment equations 137
5.1 The distribution function 137
5.2 The Boltzmann and Vlasov equations 140
5.3 Solutions based on constants of the motion 144
5.4 The moment equations 146
5.5 Electron and ion pressure waves 155
5.6 Collisional drag force 162
5.7 Ambipolar diffusion 166
6 Magnetohydrodynamics 175
6.1 The basic equations of MHD 175
6.2 Magnetic pressure 183
6.3 Magnetic field convection and diffusion 185
6.4 The energy equation 192
6.5 Magnetohydrodynamic waves 195
6.6 Static MHD equilibrium 204
6.7 MHD stability 219
6.8 Magnetic reconnection 240
7 Discontinuities and shock waves 251
7.1 The MHD jump conditions 252
7.2 Classification of discontinuities 255
7.3 Shock waves 258
8 Electrostatic waves in a hot unmagnetized plasma 281
8.1 The Vlasov approach 281
8.2 The Landau approach 290
8.3 The plasma dispersion function 308
8.4 The dispersion relation for a multi—component plasma 311
8.5 Stability 318
9 Waves in a hot magnetized plasma 341
9.1 Linearization of the Vlasov equation 342
9.2 Electrostatic waves 345
9.3 Electromagnetic waves 367
10 Non—linear effects 391
10.1 Quasi—linear theory 391
10.2 Stationary non—linear electrostatic potentials 406
11 Collisional processes 415
11.1 Binary Coulomb collisions 416
11.2 Importance of small—angle collisions 417
11.3 The Fokker–Planck equation 420
11.4 Conductivity of a fully ionized plasma 427
11.5 Collision operator for Maxwellian distributions of electrons
and ions 431
Appendix A Symbols 435
Appendix B Vector differential operators 441
Appendix C Vector calculus identities 443
Index 445
1 Introduction 1
2 Characteristic parameters of a plasma 5
2.1 Number density and temperature 5
2.2 Debye length 7
2.3 Plasma frequency 10
2.4 Cyclotron frequency 12
2.5 Collision frequency 13
2.6 Number of electrons per Debye cube 15
2.7 The de Broglie wavelength and quantum effects 17
2.8 Representative plasma parameters 18
3 Single particle motions 23
3.1 Motion in a static uniform magnetic field 23
3.2 Motion in perpendicular electric and magnetic fields 26
3.3 Gradient and curvature drifts 32
3.4 Motion in a magnetic mirror field 39
3.5 Motion in a time varying magnetic field 45
3.6 Adiabatic invariants 48
3.7 The Hamiltonian method 60
3.8 Chaotic orbits 68
4 Waves in a cold plasma 75
4.1 Fourier representation of waves 75
4.2 General form of the dispersion relation 84
4.3 Waves in a cold uniform unmagnetized plasma 87
4.4 Waves in a cold uniform magnetized plasma 94
4.5 Ray paths in inhomogeneous plasmas 127
5 Kinetic theory and the moment equations 137
5.1 The distribution function 137
5.2 The Boltzmann and Vlasov equations 140
5.3 Solutions based on constants of the motion 144
5.4 The moment equations 146
5.5 Electron and ion pressure waves 155
5.6 Collisional drag force 162
5.7 Ambipolar diffusion 166
6 Magnetohydrodynamics 175
6.1 The basic equations of MHD 175
6.2 Magnetic pressure 183
6.3 Magnetic field convection and diffusion 185
6.4 The energy equation 192
6.5 Magnetohydrodynamic waves 195
6.6 Static MHD equilibrium 204
6.7 MHD stability 219
6.8 Magnetic reconnection 240
7 Discontinuities and shock waves 251
7.1 The MHD jump conditions 252
7.2 Classification of discontinuities 255
7.3 Shock waves 258
8 Electrostatic waves in a hot unmagnetized plasma 281
8.1 The Vlasov approach 281
8.2 The Landau approach 290
8.3 The plasma dispersion function 308
8.4 The dispersion relation for a multi—component plasma 311
8.5 Stability 318
9 Waves in a hot magnetized plasma 341
9.1 Linearization of the Vlasov equation 342
9.2 Electrostatic waves 345
9.3 Electromagnetic waves 367
10 Non—linear effects 391
10.1 Quasi—linear theory 391
10.2 Stationary non—linear electrostatic potentials 406
11 Collisional processes 415
11.1 Binary Coulomb collisions 416
11.2 Importance of small—angle collisions 417
11.3 The Fokker–Planck equation 420
11.4 Conductivity of a fully ionized plasma 427
11.5 Collision operator for Maxwellian distributions of electrons
and ions 431
Appendix A Symbols 435
Appendix B Vector differential operators 441
Appendix C Vector calculus identities 443
Index 445