簡介
電催化劑析氫反應的簡寫是HER。是指通過電化學的方法使用催化劑產生氫氣。能源和環境是人類社會可持續發展涉及的最主要問題。全球80%的能量需求來源於化石燃料,這最終必將導致化石燃料的枯竭,而其使用也將導致嚴重的環境污染。從化石燃料逐步轉向利用可持續發展無污染的
非化石能源是發展的必然趨勢。氫是理想的清潔能源之一也是重要的化工原料,受到世界各國廣泛的重視。電解水制氫是
實現工業化、廉價製備氫氣的重要手段。
高活性催化電極材料的選擇及性能
對於析氫電催化反應,最早進行這方面探索的人是Kita,他曾把過渡金屬電極材料的析氫反應交換電流密度I與電極材料元素的原子序數聯繫起來,發現各種金屬的lgI值基本上是原子序數的周期函式。Engel Brewer價鍵理論指出,d軌道未充滿或半充滿的過渡系左邊的金屬(如Fe、Co、Ni)同具有成對的但在純金屬中不適合成健的d電子的過渡系右邊的金屬(如W、Mo、La、Ha、Zr)熔成合金時,對析氫反應產生非常明顯的電催化協同作用。
過渡金屬具有未成對的d電子和未充滿的d軌道,具有良好的催化活性;電催化反應的速度取決於吸附作用的能量;金屬晶格能影響析氫電催化活性。這對析氫電催化劑的選擇和設計具有重要的指導意義。
活性氫陰極材料主要有兩類:
(1)貴金屬;
(2)鎳基材料,它包括鎳金屬,
鎳基合金,鎳基複合材料,多孔鎳等。大量文獻曾報導過貴金屬Pt族元素具有優異的電催化活性,其氫超電勢低,但是貴金屬價格昂貴,不能大量投入使用。因此,眾多的研究者都致力於鎳基材料的研究。
2.複合合金鍍層電極材料
為了獲得高催化活性的析氫電極,人們採用複合電沉積技術獲得複合合金鍍層。所謂複合合金鍍層是指在基體金屬(如Ni)中嵌入第二相的固體微粒而形成複合合金層,這是製備高催化活性電極材料的新方法。
與
金屬催化劑相比,非晶態合金催化劑具有許多獨特的性能:
(1) 在很大範圍內改變合金的成分,達到所需的電子結構,形成最佳的電催化活性。
(2) 催化活性中心以單一形式(固熔體) 均勻分布在表面上,從而具有高的機械強度和卓越的耐腐蝕性,因而非晶態合是一種優良的、有前途的電極材料。
含有稀土元素的合金材料往往用作析氫電極材料。從水溶液中電沉積製備Ni-La合金,在25%NaOH溶液中析氫活性比Ni電極大大提高。採用合金電沉積和複合鍍技術,將NiMo合金和稀土
儲氫合金交替的鍍復到電極表面作析氫反應的催化層,稀土儲氫元素的引入,不僅提高了電極對析氫反應的催化活性,而且增強了催化層的抗氧化能力,從而延長了電極的使用壽命。
5.納米合金電極材料
納米材料是由極細晶粒組成,特徵維度尺寸在納米數量級(1~100nm)的固體材料。由於它們在結構上表現出
量子尺寸效應和
巨觀量子隧道效應,因此具有獨特的電子傳遞和電催化性能。用電沉積法可以十分經濟而且簡便地製得具有納米級結構的純金屬,合金及金屬- 陶瓷複合物,因而在電催化、儲氫等方面表現出良好的套用前景。
高活性析氫催化電極的研究動態
提高析氫電極催化活性的方法有很多種,歸納起來主要有以下三類:
1) 在陽極電解液中添加有催化作用的物質;
2) 將陰極改為活性高的材料;
3) 對陰極材料的表面進行修飾。
要尋找高催化活性地電極材料,必須採用ηH2低的金屬或合金。從能量因素來看,對低氫超電勢金屬,在平衡電極電勢附近,那些吸附氫較弱的金屬往往表現出較高的催化活性,一般認為,金屬鍵d成分越高,而不成對的d電子就較少,M-H吸附鍵也較弱。過渡金屬原子中存在可形成化學吸附的空d電子軌道,正適合有氫原子吸附過程的析氫電極反應。因此,選擇氫析反應的催化電極範圍主要集中在
過渡金屬元素上。選擇合適的過渡金屬原子以及適當的中心原子的周圍環境,使催化電極的導電性、電化學穩定性和必要的催化活性得到兼顧,是設計電化學催化電極的主要任務。
鉑及鉑族金屬對析氫有顯著的催化活性及穩定性,所用的析氫催化劑仍主要以金屬鉑為主。最初,電催化劑採用大量的貴金屬,工業化成本高,人們主要致力於負載型催化劑的研究,充分利用沉積金屬,儘可能地使金屬薄層沉積並均勻分布,以達到提高活性表面積、機械強度、化學穩定性,從而改善催化性能。此外,鎳基材料作為活性氫陰極材料有其優勢所在。鎳的二元或
三元合金能使ηH2降低,是製備高催化活性電極材料的常用方法之一;鎳的複合合金鍍層使催化活性增加,是製備高催化活性電極材料的新方法;鎳的
非晶態合金和鎳的
稀土元素合金能提高析氫性能和電極壽命,是一種優良有前途的電極材料。因此,如何提高鎳基材料各種電極材料的利用率、降低電極成本、減少環境污染和能否大規模工業化,仍是今後研究的一大趨勢。
納米晶合金材料對析氫反應表現出高的催化活性,當晶粒尺寸小到某一數值時,金屬費米能級附近的電子能級由準連續變成離散能級,納米微粒存在不連續的最高已占分子軌道和最低未占分子軌道,能隙變寬,表面能升高,晶粒尺寸變小後,引起納米晶粒表面原子輸送和電子能譜的變化,從而使表面原子具有高的催化活性。鎳鉬合金以及其他合金納米晶型的合金微粒具有高的表面能,從而使表面原子具有高的活性,析氫交換電流密度增大,析氫過電位降低。可見,納米材料的析氫催化電極仍將是以後的主要研究對象。電沉積製備的納米晶體電催化電極不僅催化活性大提高,同時也使得機體的壽命大大提高,耐蝕性、耐高溫性等增強,因此,電沉積納米晶型的電催化析氫電極的研究與開發具有廣闊的前景。