作為勒讓德符號的推廣,雅可比符號(Jacobi symbol)是Jacobi於1837年引入的一種數論符號。
基本介紹
- 中文名:雅可比符號
- 外文名:Jacobi symbol
- 學科:數學-初等數論
- 來源:勒讓德符號
- 符號表示:(a/m)或(a\m)
- 相關名詞:勒讓德符號
簡介,定義補充說明,定理,定理1,定理2,定理3,舉例,例1,例2,
簡介
![](/img/3/52e/wZ2NnL4QzNlNDO2QDMhRDN5QjZ3EDO2AzNihzM2QDMklDNxQzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
其中,
是
對
的勒讓德符號。例如,取
,則:
![](/img/a/8c8/wZ2NnL4UGOzQmNxQTZ1cTNyIGZjNTY4QDM3ImN1MWZiZTOwQ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/0e8/wZ2NnLmJGZiljYmBjM4YjYiRTNwEGOhBDZmdTMmJWZ5gDZ4gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/b81/wZ2NnLxUWO3IWN1YmYmBzYmZmM1MjMzQ2M2UjN3QjNzcTOzczLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/c/379/wZ2NnL5QmM2kTOwImMzkTNilTY2Y2YmZzNlZWYzYjMlBTM0IzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/862/wZ2NnLiZ2YyIWO1MTZkFTO2ETN1kjMlRjYzIDOlJGM1YDMjJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/fab/wZ2NnL3MTY3EDN1IjMwMDN2ImNzQjY1IWZ4Q2NhdDNyEGNkVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
註:雅可比符號是勒讓德符號的推廣,但是根據雅可比符號的值不能判斷同餘式是否有解。
定義補充說明
(1)當
是奇素數時,雅可比符號就是勒讓德符號。
![](/img/e/3ee/wZ2NnLjBTN0cDM0MWYiNTOxImY1czYxMTN1QDMkVmYlhDOmRzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
(2)當
是奇素數且
時,方程
有解。當m不是奇素數時,這個結論不一定成立。
![](/img/e/3ee/wZ2NnLjBTN0cDM0MWYiNTOxImY1czYxMTN1QDMkVmYlhDOmRzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/b4e/wZ2NnL5MmMjJDN2QDMhFGZ3MTM4IGZkRTO1kjZhdTZ5IGNlBzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/286/wZ2NnLhhzYzMGZ3QGOwYzNhJTMxgjYjZ2N0YWNxEDMkVjMxE2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
定理
定理1
(1)若
,則
![](/img/9/912/wZ2NnLlBTYjVGMxATOiRmNjlDO5ETY2QTOxYjYmRmZlJzN4U2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/bd6/wZ2NnLjFjZ1kTOkhTYmR2YxgzMyM2M0YDN4EmY1EWZ3YTOyU2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
(2)![](/img/c/7e4/wZ2NnL5cDOmNDM0UzNyQWMlFWOiBDO4QWZ1I2YmVGZ0YzNkNzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/c/7e4/wZ2NnL5cDOmNDM0UzNyQWMlFWOiBDO4QWZ1I2YmVGZ0YzNkNzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
(3)對於任意的整數
,有
![](/img/9/b40/wZ2NnLkljZ0UmM5MDNkRTN5ImM4QmZ2I2M2kTOyU2NiJjMhVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/19b/wZ2NnLmRzYxETZhZGMzQTO5kjNmBjY1MzYmVWNhhzMjNGN3kzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
(4)對於任意的整數a,b,(a,m)= 1,有
![](/img/9/ece/wZ2NnLlRDOyEmYjJDNyETYzE2Y0cDO2YzMkZWY4cTZyQTYyU2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
定理2
設
是奇數,其中
是素數,則下面的結論成立:
![](/img/5/e97/wZ2NnLzI2MiVDOykDOxQDMwU2NmF2MzkzNhNmY1EWZyITMlFzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/f6a/wZ2NnL0QjM4UDZzEWY1ETZ1QGNjZmZ2UDZ5Y2NkNzY0MTM3Q2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
(1)![](/img/1/433/wZ2NnL3IzMklDNiJGZykjY1cDNidTM3gTYyETYkNWOmV2Y2E2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/433/wZ2NnL3IzMklDNiJGZykjY1cDNidTM3gTYyETYkNWOmV2Y2E2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
(2)![](/img/5/277/wZ2NnL4UWYihjZ5EmZ2YTNlJDOmJjMyIWN4gjYjV2MiNTZkdzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/277/wZ2NnL4UWYihjZ5EmZ2YTNlJDOmJjMyIWN4gjYjV2MiNTZkdzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
定理3
設m,n是大於1的奇整數,則
![](/img/a/c90/wZ2NnLwkTYxIzMmFzMmBTZzAzMwIDNyMGMjdzM0QGN4ETOmR2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
利用以上定理,可以容易計算Jacobi符號,特別是Legendre符號的數值。但是,必須注意,在判斷方程
的可解性時,Legendre符號和Jacobi的作用是不一樣的。
![](/img/3/286/wZ2NnLhhzYzMGZ3QGOwYzNhJTMxgjYjZ2N0YWNxEDMkVjMxE2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
對於一般的正奇數m來說,即使條件
成立,也並不能保證
一定有解。
![](/img/d/b4e/wZ2NnL5MmMjJDN2QDMhFGZ3MTM4IGZkRTO1kjZhdTZ5IGNlBzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/286/wZ2NnLhhzYzMGZ3QGOwYzNhJTMxgjYjZ2N0YWNxEDMkVjMxE2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
舉例
例1
已知3371是素數,判斷方程
是否有解。
![](/img/7/a4a/wZ2NnLzUWMyQGN4ATZlR2MzMmZlRjY2ADOzEGZxQDOmNGN5IzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
解:利用Jacobi符號的性質,有
![](/img/2/414/wZ2NnLzUDZjRWMiVWYwIDOxcDM1YTZxImY2Q2MmV2MxMWNmF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/7b7/wZ2NnLzEGOlFTYzYWNkVGOiNTYwIWZmF2M5gjY3YDM0UWMkN2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/768/wZ2NnLmJ2NhNzNjlzNlV2MjlDO2UTMzgDOjlDMhJTO5EDM4I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/11e/wZ2NnLlVjY2YzN1EjY4YWZxETOmBDO5gTNyYGOiJTO3MTN4MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
因此,方程無解。
例2
設a與b是正奇數,求
的關係。
![](/img/2/696/wZ2NnLjZmYhdzN4AjM4QjN2E2YkljMwATZmRGM4UmYjRGO0Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
解:
![](/img/c/33e/wZ2NnL2gjM2YjZ0kzY3MGOhN2MlRDZ1kTOjV2MjdTZmFDMiF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/fff/wZ2NnLmRTOwQGZyEjZlJWZ0IzNyUjYkNTM2IWOxQzMmJDZkJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/c/0bf/wZ2NnL1QjN5YDOkNzMjZWY5QzYmV2MhBjN2kjYyYDNlV2NwYzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/eac/wZ2NnLzQDMidDNzQWM3I2M0UWM3EWYzAzN2gzYmhTM5EGZyY2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)