陳喜(天津大學教授)

陳喜(天津大學教授)

本詞條是多義詞,共12個義項
更多義項 ▼ 收起列表 ▲

陳喜,1964年出生,教授,博導,現任天津大學表層地球系統科學研究院講席教授,天津大學地球系統科學學院生態水文與水資源研究中心主任,畢業於河海大學,分別於1984年7月、1990年3月、1999年11月在河海大學獲水文水資源專業學士學位、碩士學位、博士學位。主要從事地下水開發利用與管理、流域水文過程模擬以及水文水資源對全球變化回響等研究工作。主持國家自然科學基金重大項目、國際合作重大項目、國家重大基礎研究項目、教育部科學技術研究重大項目、國家自然科學基金委重點項目等。

基本介紹

  • 中文名:陳喜
  • 國籍中國
  • 民族:漢
  • 出生地:江蘇淮安  
  • 出生日期:1964年1月  
  • 畢業院校河海大學
  • 學位/學歷:博士
  • 職業:教育科研工作者
  • 專業方向:水文水資源
  • 學術代表作:陳喜, 程勤波, 張志才. 飽和-非飽和水流數值模擬,中國水利水電出版社,2010.
    陳喜, 張志才, 容麗, 束龍倉, 閻長虹, 蘇維詞, 石朋. 西南喀斯特地區水循環過程及其水文生態效應, 科學出版社, 2014.
  • 職稱天津大學教授
人物經歷,研究方向,獲獎記錄,社會任職,論文成果,

人物經歷

  • · 2018.1 - 天津大學- 教授
  • · 2002.8 - 2017.12 河海大學 - 教授
  • · 2000.7 - 2002.7 University of Nebraska-Lincoln - 博士後
  • · 1998.12 - 2000.12 香港中文大學 - 研究助理、博士後
  • · 1995.9 - 1999.7河海大學 - 博士
  • · 1987.9 - 1990.7河海大學 - 碩士
  • · 1984.8 - 1987.8 武漢水利電力學院(現武漢大學) - 助教
  • · 1980.9 - 1984.7河海大學 - 學士

研究方向

地表水與地下水相互作用,氣候變化對水文水資源影響,地下水數值模擬,植被-土壤-水文耦合模擬

獲獎記錄

入選教育部“新世紀優秀人才支持計畫”,江蘇省“333 高層次人才培養工程中青年科學技術帶頭人、中青年科技領軍人才、江蘇省優秀教育工作者稱號、“嚴愷科技獎 ”一等獎。發表論文300 余篇,其中被SCI 收錄150 余篇;出版專著4 部;2010 年“陸面水文過程耦合機理與模擬研究” 獲教育部高等學校科學技術獎(自然科學類)二等獎(2010-084,排名第二),2009 年“流域水文物理過程及數字模擬”獲江蘇省科學技術進步獎(自然科學類)一等獎(2009-J-1-17-R2,排名第二)。

社會任職

現任天津大學講座教授,博士生導師。天津大學地球系統科學學院生態水文與水資源研究中心主任,天津市環渤海地球關鍵帶科學與可持續發展重點實驗室主任。曾任河海大學水文水資源學院副院長,水文水資源與水利工程國家重點實驗室首席專家,國家自然科學基金重大項目、國際合作重大項目、重點項目以及科技部973項目、重點研發項目課題等負責人。
曾任Hydrological Science Journal副主編,現為Journal of Ecohydrology、水利水電科技進展、南水北調與水利科技、中國岩溶、水資源研究等編委。

論文成果

  • [1]Qiu, N., Chen, X.*, Hu, Q., Liu, J., Huang, R., Gao, M., 2018. Hydro-stochastic interpolation coupling with the Budyko approach for prediction of mean annual runoff. Hydrol. Earth Syst. Sci. https://doi.org/10.5194/hess-22-2891-201
  • [2]Zhicai Zhang, Xi Chen*, Anas Ghadouani, Peng Shi. Modelling hydrological processes influenced by soil, rock and vegetation in a small karst basin of southwest China. Hydrological Processes, 2011, 25(15): 2456-2470.
  • [3]Chen Xi*, Yuanyang Huang, Minhua Ling, Qi Hu, Bo Liu, Numerical modeling groundwater recharge and its implication in water cycles of two interdunal valleys in the Sand Hills of Nebraska, Physics and Chemistry of the Earth, 2012, Parts A/B/C, 53: 10-18.
  • [4]Chen Xi*, Ling Min-hua, Zhou Qiu, Zhang Zhi-cai, Cheng Qin-bo, Numerical modeling the role of rubber dams on groundwater recharge and phreatic evaporation loss in riparian zones, Environmental Earth Sciences, 2012, 65(1): 345-352.
  • [5]Chen Xi*, Zhang Yan-fang, Xue Xianwu, Zhang Zhicai, Wei Lingna, Estimation of baseflow recession constants and effective hydraulic parameters in the karst basins of southwest China, Hydrology Research, 2012, 43(1-2):102-112.
  • [6]Liu Jintao, Chen Xi*, Wu Jichun, Zhang Xingnan, Feng Dezeng, Xu Chongyu. Grid parameterization of a conceptual distributed hydrological model through integration of a sub-grid topographic index: necessity and practicability, Hydrological Sciences Journal, 2012, 57(2): 282-297.
  • [7]Liu Jintao, Chen Xi*, Zhang Xingnan, Kyle D. Hoagland. Grid digital elevation model based algorithms for determination of hillslope width functions through flow distance transforms, Water Resour. Res., 2012, 48(4): 502-504.
  • [8]Zhang Zhicai, Chen Xi*, Shi Peng, Ou Geng-xin. Study of canopy transpiration based on a distributed hydrology model in a small karst watershed of southwest China, Carbonates Evaporites, 2013, 28:111-117.
  • [9]Zhang Zhicai, Chen Xi*, Huang Yuanyang, Zhang Yanfang, Effect of catchment properties on runoff coefficient in a karst area of southwest China, Hydrological Processes, 2013, DOI: 10.1002/hyp.9920.
  • [10]Chen Xi, Zhang Yanfang, Zhou Yanyu et al, 2013. Analysis of hydrogeological parameters and numerical modeling groundwater in a karst watershed, southwest China, Carbonates Evaporites, 2013, 28:89-94.
  • [11]Zhang Zhicai, Chen Xi*, Chen Xunhong, Shi Peng. Quantifying time lag of epikarst-spring hydrograph response to rainfall using correlation and spectral analyses, Hydrogeology Journal, 2013, 21(7):1619-1631.
  • [12]Liu Jintao, Chen Xi*, H. Lin, H. Liu, H. Song. A simple geomorphic-based analytical model for predicting the spatial distribution of soil thickness in headwater hillslopes and catchments, Water Resour. Res., 2013, 49(11): 7733-7746.
  • [13]Zhang Zhicai, Chen Xi*, Huang Yuanyang, Zhang Yanfang. Effect of catchment properties on runoff coefficient in a karst area of southwest China, Hydrological Processes, 2014, 28(14):3691-3702.
  • [14]Shi Peng, Qiao Xueyuan, Chen Xi*, Zhou Mi, Qu Simin, Ma Xinxin, Zhang Zhicai. Spatial distribution and temporal trends in daily and monthly precipitation concentration indices in the upper reaches of the Huai River, China, Stoch Environ Res Risk Assess,, 2014, 28(2):201-212.
  • [15]Cheng Qinbo, Chen Xi*, Xu Chongyu, Christian Reinhardt-Imjela, Achim Schulte; Improvement and comparison of likelihood functions for model calibration and parameter uncertainty analysis within a Markov chain Monte Carlo scheme, Journal of Hydrology, 2014, 519(519):2202-2214.
  • [16]Zhang Runrun, Chen Xi*, Zhang Zhicai, Shi Peng. Evolution of hydrological drought under the regulation of two reservoirs in the headwater basin of the Huaihe River, China, Stoch Environ Res Risk Assess, 2015, 29(2):487-499.
  • [17]Cheng Qinbo, Christian Reinhardt-Imjela, Chen Xi*, Achim Schulte, Ji Xiang, Li Fulin. Improvement and comparison of the rainfall-runoff methods in SWAT at the monsoonal watershed of Baocun, Eastern China, Hydrological Sciences Journal, 2015.
  • [18]Huang Yuanyang, Xunhong Chen, Xi*, Chen, Gengxin Ou. Transmission losses during two flood events in the Platte River, south-central Nebraska, Journal of Hydrology, 2015, 520:244–253.
  • [19]Zhang Runrun, Xi Chen*, Qinbo Cheng, Zhicai Zhang, Peng Shi. Joint probability of precipitation and reservoir storage for drought estimation in the headwater basin of the Huaihe River, China, Stochastic Environmental Research and Risk Assessment, 2016, 30: 1641-1657.
  • [20]Zengxin Zhang, Xi Chen*, Chong-Yu Xu, Lifeng Yuan, Bin Yong, Shaofeng Yan, Evaluating the non-stationary relationship between precipitation and streamflow in nine major basins of China during the past 50 years, Journal of Hydrology, 2011,409:81-93.
  • [21]Gao Man, Chen Xi*, Liu Jintao, Zhang Zhicai, Cheng Qin-bo; Using two parallel linear reservoirs to express multiple relations of power-law recession curves, Journal of Hydrologic Engineering, 2017, 22(7): 0-04017013.
  • [22]Zhang, Z., Chen, X.*, Soulsby, C. Catchment‐scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone. Hydrological Processes, 2017, 31(19), 3421-3436.
  • [23]Cheng, Q.B., Chen, X., Cheng, D.D., Wu, Y.Y., Xie, Y.Y., 2018. Improved inverse modeling by separating model structural and observational errors. Water, 10(9), 1151.
  • [24]Cheng, Q.B., Chen, X., Wang, J., Zhang, Z.C., Zhang, R.R., Xie, Y.Y., Reinhardt-Imjela, C., Schulte, A., 2018. The use of river flow discharge and sediment load for multi-objective calibration of SWAT based on the Bayesian inference. Water, 2018, 10(11): 1662.
  • [25]Zhang, R., Chen, X.*, Zhang, Z., Soulsby, C., Gao, M. How can streamflow and climate-landscape data be used to estimate baseflow mean response time? Journal of Hydrology, 2018, 557: 916-930.
  • [26]Cheng, Q.B., Chen, X., Xu, C.Y., Zhang, Z.C., Reinhardt-Imjela, C., Schulte, A., 2018. Using maximum likelihood to derive various distance-based goodness-of-fit indicators for hydrologic modeling assessment. Stoch. Environ. Res. Risk Assess. https://doi.org/10.1007/s00477-017-1507-8.
  • [27]Gao Man, Chen Xi*, Liu Jintao, Zhang Zhicai; Regionalization of annual runoff characteristics and its indication of co-dependence among hydro-climate-landscape factors in Jinghe River Basin, China, Stochastic Environmental Research and Risk Assessment, 2018, 32(6): 1613-1630.
  • [28]Chen, X., Zhang, Z., Soulsby, C., Cheng, Q., Binley, A., Jiang, R., Tao, M. (2018). Characterizing the heterogeneity of karst critical zone and its hydrological function: an integrated approach. Hydrological Processes, 32(19), 2932-2946.
  • [29]Xiao, L., Chen, X.*, Zhang, R., Zhang, Z. Spatiotemporal evolution of droughts and their teleconnections with large-scale climate indices over Guizhou Province in Southwest China. Water, 2019, 11(10): 2104.
  • [30]Huang, R., Chen, X.*, Hu, Q., 2019. Changes in vegetation and surface water balance at basin-scale in Central China with rising atmospheric CO2. Climatic Change, 2019, 155(3): 437-454.
  • [31]Qinbo Cheng; Xi Chen*; Min Tao; Andrew Binley*; Characterization of karst structures using quasi-3D electrical resistivity tomography, Environmental Earth Sciences, 2019, 78(9).
  • [32]Zhang, Z., Chen, X.*, Cheng, Q., Soulsby, C. Storage dynamics, hydrological connectivity and flux ages in a karst catchment: conceptual modelling using stable isotopes. Hydrology and Earth System Sciences, 2019, 23(1), 51-71.
  • [33]Rao W, Chen X., Meredith KT, Tan H, Gao M, Liu J. Water uptake of riparian plants in the lower Lhasa River Basin, South Tibetan Plateau using stable water isotopes. Hydrological Processes. 2020, 34:3492–3505.
  • [34]Wang, Jiarong; Chen, Xi*; Hu, Qi; Liu, Jintao; Responses of terrestrial water storage to climate variation in the Tibetan Plateau, Journal of Hydrology, 2020, 584, 124652.
  • [35]Zhang Runrun; Chen Xi*; Zhang Zhicai; Soulsby Chris; Using hysteretic behaviour and hydrograph classification to identify hydrological function across the “hillslope–depression–stream” continuum in a karst catchment, Hydrological Processes, 2020, 34(16): 3464-3480.
  • [36]Zhang Zhicai*; Chen Xi; Li Siliang; Yue Fujun; Cheng Qinbo; Peng Tao; Soulsby Chris; Linking nitrate dynamics to water age in underground conduit flows in a karst catchment, Journal of Hydrology, 2020: 125699.
  • [37]Zhang Zhicai; Chen Xi*; Cheng Qinbo; Li Siliang; Yue Fujun; Peng Tao; Soulsby Chris; Coupled hydrological and biogeochemical modelling of nitrogen transport in the karst critical zone. Science of the Total Environment, 2020, 732: 138902.
  • [38]Zhang Zhicai*; Chen Xi; Cheng Qinbo; Soulsby Chris; Characterizing the variability of transit time distributions and young water fractions in karst catchments using flux tracking, Hydrological Processes, 2020, 34(15): 3156-3174.
  • [39]Jiang Shanshan; Chen Xi*; Keith Smettem, Wang Tiejun; 2020, Climate and land use influences on changing spatiotemporal patterns of mountain vegetation cover in southwest China, Ecological Indicators, 2021, 121: 107193.
  • [40]Tan Hongbing*; Chen Xi*; Shi Dongping; Rao Wenbo; Liu Jing; Liu Jintao; Christopher J. Eastoe; Wang Jiarong; Base flow in the Yarlungzangbo River, Tibet, maintained by the isotopically-depleted precipitation and groundwater discharge, Science of the Total Environment, 2021, 759, 143510.
  • [41]Wang, Jiarong, Chen, Xi*, Liu, Jintao, Hu, Qi. Changes of precipitation-runoff relationship induced by climate variation in a large glaciated basin of the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2021, 126, e2020JD034367.
  • [42]Gao Man, Chen Xi*, Wang Jiarong, Chris Soulsby, Cheng Qinbo; Climate and landscape controls on spatio-temporal patterns of stream water stable isotopes in a large glacierized mountain basin on the Tibetan Plateau. Science of The Total Environment, 2021, 771: 144799.
  • [43]Sun, Y., Chen, X.*, Yang, L. Modeling Groundwater-Fed Irrigation and Its Impact on Streamflow and Groundwater Depth in an Agricultural Area of Huaihe River Basin, China. Water, 2021, 13(16), 2220.
  • [44]Tao, M., Chen, X.*, Cheng, Q., Binley, A. Evaluating the joint use of GPR and ERT on mapping shallow subsurface features of karst critical zone in southwest China. Vadose Zone Journal, 2021.
  • [45]Lianbin Cai, Xi Chen*, Richao Huang, Keith Smettem, Runoff change induced by vegetation recovery and climate change over carbonate and non-carbonate areas in the karst region of South-west China, 2021, J. of Hydrology.
  • [46]Shanshan Jiang, Xi Chen, Richao Huang, Tiejun Wang, Keith Smettem. Effect of the altitudinal climate change on growing season length for deciduous broadleaved forest in southwest China. Science of the Total Environment. 2022, 828: 154306.
  • [47]Gao Man, Chen Xi*, Shailesh Singh, Wei lingna; An improved method to estimate the rate of change of streamflow recession and related basin-scale parameters from hydrographs. Journal of Hydrology, 2022, 604: 127254.

相關詞條

熱門詞條

聯絡我們