邵海東(湖南大學機械與運載工程學院副教授、博士生導師)

邵海東(湖南大學機械與運載工程學院副教授、博士生導師)

本詞條是多義詞,共2個義項
更多義項 ▼ 收起列表 ▲

邵海東,男,1990年生,博士湖南大學機械與運載工程學院副教授、嶽麓學者、博士生導師。

基本介紹

  • 中文名:邵海東
  • 畢業院校西北工業大學
  • 學位/學歷:博士
  • 專業方向:機械與運載工程
  • 任職院校:湖南大學
人物經歷,教育經歷,工作經歷,學術兼職,研究領域,科研項目,學術成果,熱點論文,期刊論文,會議論文,授權專利,獎勵榮譽,

人物經歷

教育經歷

2009年9月-2013年7月,西北工業大學航空學院電氣工程及其自動化,學士
2013年9月-2015年9月,西北工業大學航空學院,載運工具運用工程,工學碩士,導師:姜洪開 教授
2015年9月-2018年12月,西北工業大學航空學院,載運工具運用工程,工學博士,導師:姜洪開 教授

工作經歷

2018年12月-至今,湖南大學機械與運載工程學院,助理教授、嶽麓學者晨星崗B、碩士生導師

學術兼職

Mechanical Systems and Signal Processing、IEEE Transactions on Industrial Electronics、IEEE Transactions on Industrial Informatics、Knowledge-Based Systems、ISA Transactions、IEEE Transactions on Systems, Man, and Cybernetics、IEEE Access、Neurocomputing、Mechanism and Machine Theory、Measurement、IEEE Sensors Journal、Computers in Industry、RSC Advances、Measurement Science and Technology、Advances in Mechanical Engineering等期刊審稿人

研究領域

智慧型診斷與壽命預測,信號處理與深度學習,健康管理與維護支持

科研項目

近五年主持及參與科研項目
[1]主持國家自然科學基金青年科學基金項目:基於深度生成對抗網路的直升機動力傳動系統智慧型健康預示研究,51905160,2020年01月至 2022年12月
[2]主持中央高校基本科研業務費項目:基於深度學習和多源信息融合的機械故障智慧型診斷,531118010335,2019年01月至 2022年12月
[3]主持西北工業大學博士論文創新基金重點資助項目:深度學習理論在飛行器故障預示中的套用研究,CX201710,2017年01月至 2018年12月
[4]參與國家自然科學基金重大研究計畫培育項目:航空發動機健康狀態多源深度信息融合與智慧型預示研究
[5]參與國家自然科學基金面上項目:臨近空間飛行器服役性能退化機理與健康自主感知方法研究
[6]參與國家自然科學基金面上項目:基於深度學習的飛行器故障不確定性評估與預測研究
[7]參與軍委裝備發展部預研基金項目:XXXX特徵提取與定量診斷技術
[8]參與航空科學基金項目:航空發動機XXXX早期故障診斷技術研究
[9]參與航空科學基金項目:基於機器學習的XX振動環境預計方法研究
[10]參與中國商飛客服基金項目:民用飛機飛控系統狀態監控及故障診斷技術研究

學術成果

熱點論文

[1] Shao Haidong, Jiang Hongkai, Zhang Haizhou, et al. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100: 743-765. (SCI小類一區, Top期刊, IF=5.005, ESI熱點論文,2019年5月入選)
ESI高被引論文(ESI Highly Cited Paper)
[1] Shao Haidong, Jiang Hongkai, Zhang Haizhou, et al. Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2727-2736. (SCI大類一區, Top期刊, IF=7.503, ESI高被引論文)
[2] Shao Haidong, Jiang Hongkai, Zhao Huiwei, et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2017, 95: 187-204. (SCI小類一區, Top期刊, IF=5.005, ESI高被引論文)
[3] Shao Haidong, Jiang Hongkai, Wang Fuan, et al. An enhancement deep feature fusion method for rotating machinery fault diagnosis[J]. Knowledge-Based Systems, 2017, 119: 200-220. (SCI大類二區, IF=5.101, ESI高被引論文)
[4] Shao Haidong, Jiang Hongkai, Zhang Haizhou, et al. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100: 743-765. (SCI小類一區, Top期刊, IF=5.005, ESI高被引論文)
[5] Shao Haidong, Jiang Hongkai, Lin Ying, et al. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders[J]. Mechanical Systems and Signal Processing, 2018, 102: 278-297. (SCI小類一區, Top期刊, IF=5.005, ESI高被引論文)
[6] Shao Haidong, Jiang Hongkai, Zhang Xun, et al. Rolling bearing fault diagnosis using an optimization deep belief network[J]. Measurement Science and Technology, 2015, 26: 115002. (SCI小類三區, IF=1.861, ESI高被引論文,2019年7月入選)
IOP Publishing中國區高被引論文(IOP Publishing Highly Cited Paper)
[1] Shao Haidong, Jiang Hongkai, Zhang Xun, et al. Rolling bearing fault diagnosis using an optimization deep belief network[J]. Measurement Science and Technology, 2015, 26: 115002. (SCI小類三區, IF=1.861, IOP Publishing中國區高被引論文)

期刊論文

[1] Shao Haidong, Jiang Hongkai, Zhang Haizhou, et al. Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2727-2736. (SCI大類一區, Top期刊, IF=7.503, ESI高被引)
[2] Shao Haidong, Jiang Hongkai, Zhao Huiwei, et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2017, 95: 187-204. (SCI小類一區, Top期刊, IF=5.005, ESI高被引)
[3] Shao Haidong, Jiang Hongkai, Wang Fuan, et al. An enhancement deep feature fusion method for rotating machinery fault diagnosis[J]. Knowledge-Based Systems, 2017, 119: 200-220. (SCI大類二區, IF=5.101, ESI高被引)
[4] Shao Haidong, Jiang Hongkai, Zhang Haizhou, et al. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100: 743-765. (SCI小類一區, Top期刊, IF=5.005, ESI熱點論文)
[5] Shao Haidong, Jiang Hongkai, Lin Ying, et al. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders[J]. Mechanical Systems and Signal Processing, 2018, 102: 278-297. (SCI小類一區, Top期刊, IF=5.005, ESI高被引)
[6] Shao Haidong, Jiang Hongkai, Zhao Ke, et al. A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings[J]. Mechanical Systems and Signal Processing, 2018, 110: 193-209. (SCI小類一區, Top期刊, IF=5.005)
[7] Shao Haidong, Jiang Hongkai, Li Xingqiu, et al. Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine[J]. Knowledge-Based Systems, 2018, 140: 1-14. (SCI大類二區, IF=5.101)
[8] Shao Haidong, Jiang Hongkai, Wang Fuan, et al. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet[J]. ISA Transactions, 2017, 69: 187-201. (SCI大類二區, IF=4.343)
[9] Shao Haidong, Jiang Hongkai, Li Xingqiu, et al. Rolling bearing fault detection using continuous deep belief network with locally linear embedding[J]. Computers in Industry, 2018, 96: 27-39. (SCI大類三區, IF=4.769)
[10] Shao Haidong, Jiang Hongkai, Zhang Xun, et al. Rolling bearing fault diagnosis using an optimization deep belief network[J]. Measurement Science and Technology, 2015, 26: 115002. (SCI小類三區, IF=1.861, ESI高被引, IOP Publishing中國區高被引)
[11]He Zhiyi, Shao Haidong*, Zhang Xiaoyang, et al. Improved Deep Transfer Auto-encoder for Fault Diagnosis of Gearbox under Variable Working Conditions With Small Training Samples[J]. IEEE Access, 2019, Accepted. (SCI大類二區, IF=4.098)
[12]Jiang Hongkai, Shao Haidong, Chen Xinxia, et al. A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery[J]. Journal of Intelligent & Fuzzy Systems, 2018, 34(6): 3513-3521. (SCI大類四區, IF=1.637)
[13] Wei Dongdong, Jiang Hongkai, Shao Haidong, et al. An optimal variational mode decomposition for rolling bearing fault feature extraction[J]. Measurement Science and Technology, 2019, 30: 055004. (SCI小類三區, IF=1.861)
[14] Jiang Hongkai, Li Xingqiu, Shao Haidong, et al. Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network[J]. Measurement Science and Technology, 2018, 29: 065107. (SCI小類三區, IF=1.861)
[15]Wang Fuan, Jiang Hongkai, Shao Haidong, et al. An adaptive deep convolutional neural network for rolling bearing fault diagnosis[J]. Measurement Science and Technology 28 (2017) 095005. (SCI小類三區, IF=1.861)
[16] Li Xingqiu, Jiang Hongkai, Xiong Xiong, Shao Haidong. Rolling bearing health prognosis using a modified health index based hierarchical gated recurrent unit network[J]. Mechanism and Machine Theory 133 (2019) 229-249. (SCI小類二區, IF=3.535)
[17] 姜洪開, 邵海東, 李興球. 基於深度學習的飛行器智慧型故障診斷方法[J]. 機械工程學報, 2019, 55(7), 27-34.

會議論文

(Conference Paper)
[1]Shao Haidong*, Jiang Hongkai. Unsupervised feature learning of gearbox fault using stacked wavelet auto-encoder[C]. The 9th Annual IEEE International Conference on Prognostics and Health Management (ICPHM), Seattle, USA, 2018: 1-8. (EI)
[2]Shao Haidong, Jiang Hongkai, Zhao Huiwei, et al. Aircraft electromechanical system fault diagnosis based on deep learning[C]. The 29th International Congress on Condition Monitoring and Diagnostic Engineering Management (COMADEM), Xi’an, China, 2016: 1-6. (EI)
[3] Shao Haidong, Jiang Hongkai. Research on semi-active suspension vibration control using magneto-rheological damper[C]. Proceedings of the First Symposium on Aviation Maintenance and Management-Volume Ⅱ. Springer Berlin Heidelberg, Xi’an, China, 2014: 441-447. (EI)
[4] Jiang Hongkai, Shao Haidong, Chen Xinxia, et al. Aircraft fault diagnosis based on deep belief network[C]. The International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Shanghai, China, 2017: 123-127. (EI)

授權專利

[1] 姜洪開, 邵海東, 張雪莉, 王福安. 一種基於連續深度置信網路的滾動軸承故障預測方法. 公開號:CN 105973594B, 授權號:ZL 201610259840.9.

獎勵榮譽

[1] 2019年,西北工業大學研究生“優秀畢業生”
[2] 2018年,全國寶鋼教育基金“優秀學生特等獎”(全國25人,相關報導)
[3] 2018年,教育部博士研究生“國家獎學金
[4] 2018年,西北工業大學“優秀研究生標兵”
[5] 2018年,西北工業大學優秀研究生“學術之星”
[6] 2017年,教育部博士研究生“國家獎學金”
[7] 2017年,西北工業大學優秀研究生“學術之星”
[8] 2016年,教育部博士研究生“國家獎學金”

相關詞條

熱門詞條

聯絡我們