《遙感數據智慧型處理方法與程式設計》是2010年1月1日科學出版社出版的圖書。本書介紹了作者10餘年在人工智慧理論與遙感信息理論學科交叉領域的實踐探索所取得的成果。
基本介紹
- 書名:遙感數據智慧型處理方法與程式設計
- ISBN:9787030259325, 7030259327
- 頁數:222
- 出版社:科學出版社
- 出版時間:2010年1月1日
- 裝幀:平裝
- 開本:16
- 叢書名:地球觀測與導航技術叢書
- 正文語種:簡體中文
內容簡介,圖書目錄,
內容簡介
《遙感數據智慧型處理方法與程式設計(第2版)》主要內容包括變換與分割、貝葉斯網路、偽二維隱馬爾可夫、遺傳算法、神經網路、模糊聚類、粗糙集與容差粗糙集、支持向量機、禁忌人工免疫網路算法、粒子濾波等算法和算法組合。《遙感數據智慧型處理方法與程式設計(第2版)》密切結合遙感套用和圖像處理中的問題,在介紹智慧型算法基本原理的同時,注重闡述算法與套用問題的機理性結合,突出啟發性和實用性,培養和提高思考問題和解決問題的能力。《遙感數據智慧型處理方法與程式設計(第2版)》附有智慧型算法的軟體程式光碟及使用說明書。
《遙感數據智慧型處理方法與程式設計(第2版)》適合遙感技術、遙感信息機理和遙感圖像套用處理專業的廣大研究生使用,同時可供從事智慧型處理的軟體開發技術人員參考。
圖書目錄
序
前言
第1章 緒論
1.1 衛星遙感系統與任務
1.2 遙感數據處理任務與方法
1.3 本章小結
主要參考文獻
第2章 變換與分割
2.1 引言
2.2 GIVENS旋轉變換與分解
2.3 Gram-Schmidt向量空間投影變換
2.4 小波高頻局部高頻融合
2.5 判別函式與超平面分割
2.6 本章小結
主要參考文獻
第3章 貝葉斯網路
3.1 引言
3.2 貝葉斯基礎
3.3 貝葉斯網路推理與分類器
3.4 貝葉斯網路分類
3.5 動態貝葉斯網路
3.6 貝葉斯網路推理
3.7 本章小結
主要參考文獻
第4章 偽二維隱馬爾可夫
4.1 引言
4.2 偽二維隱馬爾可夫基礎
4.3 偽二維隱馬爾可夫模型的目標識別
4.4 P2DHMM目標檢測實驗
4.5 本章小結
主要參考文獻
第5章 遺傳算法
5.1 引言
5.2 遺傳算法基礎
5.3 遺傳算法的進化規則
5.4 遙感遺傳超平面分類
5.5 參數編解碼及其實現
5.6 EOS/MODIS圖像數據分類實驗
5.7 ETM+數據分類實驗
5.8 遺傳-匹配
5.9 遺傳-邊緣提取
5.1 0本章小結
主要參考文獻
第6章 神經網路
6.1 引言
6.2 神經網路的學習規則
6.3 BP網路分類
6.4 SOFM-LVQ網路分類
6.5 PCNN神經網路
6.6 本章小結
主要參考文獻
第7章 模糊聚類
7.1 引言
7.2 模糊聚類數學基礎
7.3 模糊C-均值聚類和改進的模糊C_均值聚類
7.4 本章小結
主要參考文獻
第8章 粗糙集與容差粗糙集
8.1 引言
8.2 粗糙集理論
8.3 容差粗糙集
8.4 容差粗糙集數據預處理算法
8.5 容差粗糙集與BP算法結合的分類實驗
8.6 容差粗糙集監督分類
8.7 本章小結
主要參考文獻
第9章 支持向量機
9.1 引言
9.2 支持向量機原理
9.3 新型支持向量機與遙感影像分類
9.4 本章小結
主要參考文獻
第10章 禁忌人工免疫網路算法
10.1 引言
10.2 禁忌搜尋和人工免疫網路
10.3 禁忌人工免疫網路算法設計與實現
10.4 基於禁忌人工免疫網路算法的影像自動配準
10.5 禁忌人工免疫網路算法的影像自動融合
10.6 本章小結
主要參考文獻
第11章 粒子濾波
11.1 引言
11.2 粒子濾波原理
11.3 粒子濾波檢測前跟蹤框架
11.4 結合背景預測算法的粒子濾波檢測前跟蹤框架
11.5 本章小結
主要參考文獻
彩圖