《逆問題的數學理論導論(第2版)》是2016年世界圖書出版公司出版的著作,作者是Andreas、Kirsch。
基本介紹
- 書名:《逆問題的數學理論導論(第2版)》
- 作者:Andreas、Kirsch
- 出版社:世界圖書出版公司
- 出版時間:2016-03-01
內容簡介,目錄,
內容簡介
《逆問題的數學理論導論(第2版 英文版)》將帶領讀者進入逆問題領域。逆問題的研究對許多科技領域諸如地球物理探測、系統識別、無損檢測及超聲層析成像等,有著重要的作用。
《逆問題的數學理論導論(第2版 英文版)》分兩部分。第一部分講不適定問題的基本概念和困難。書中通過幾個簡單的解析數值算例研究了線性不適定問題正則法的基本特徵。第二部分詳細地研究了三個特殊非線性逆問題,即逆譜問題、電阻抗斷層成像逆問題和逆散射問題。
《逆問題的數學理論導論(第2版 英文版)》凝聚了作者多年科研和教學成果,適用於科研工作者、高校教師和研究生。
《逆問題的數學理論導論(第2版 英文版)》分兩部分。第一部分講不適定問題的基本概念和困難。書中通過幾個簡單的解析數值算例研究了線性不適定問題正則法的基本特徵。第二部分詳細地研究了三個特殊非線性逆問題,即逆譜問題、電阻抗斷層成像逆問題和逆散射問題。
《逆問題的數學理論導論(第2版 英文版)》凝聚了作者多年科研和教學成果,適用於科研工作者、高校教師和研究生。
目錄
1 Introduction and Basic Concepts
1.1 Examples oflnverse Problems
1.2 Ill-Posed Problems
1.3 The Worst-Case Error
1.4 Problems
2 Regularization Theory for Equations of the First Kind
2.1 A General Regularization Theory
2.2 Tikhonov Regularization
2.3 Landweber Iteration
2.4 A Numerical Example
2.5 The Discrepancy Principle of Morozov
2.6 Landweber's Iteration Method with Stopping Rule
2.7 The Conjugate Gradient Method
2.8 Problems
3 Regularization by Discretization
3.1 Projection Methods
3.2 Galerkin Methods
3.2.1 The Least Squares Method
3.2.2 The Dual Least Squares Method
3.2.3 The Bubnov-Galerkin Method for Coercive Operators
3.3 Application to Symm's Integral Equation of the First Kind
3.4 Collocation Methods
3.4.1 Minimum Norm Collocation
3.4.2 Collocation of Symm's Equation
3.5 Numerical Experiments for Symm's Equation
3.6 The Backus-Gilbert Method
3.7 Problems
4 Inverse Eigenvalue Problems
4.1 Introduction
4.2 Construction of a Fundamental System
4.3 Asymptotics of the Eigenvalues and Eigenfunctions
4.4 Some Hyperbolic Problems
4.5 The Inverse Problem
4.6 A Parameter Identification Problem
4.7 Numerical Reconstruction Techniques
4.8 Problems
5 An Inverse Problemin Electrical Impedance Tomography
5.1 Introduction
5.2 The Direct Problem and the Neumann-Dirichlet Operator
5.3 The Inverse Problem
5.4 The Factorization Method
5.5 Problems
6 An Inverse Scattering Problem
6.1 Introduction
6.2 The Direct Scattering Problem
6.3 Properties of the Far Field Patterns
6.4 Uniqueness of the Inverse Problem
6.5 The Factorization Method
6.6 Numerical Methods
6.6.1 A Simplified Newton Method
6.6.2 A Modified Gradient Method
6.6.3 The Dual Space Method
6.7 Problems
A Basic Facts from Functional Analysis
A.1 Normed Spaces and Hilbert Spaces
A.2 Orthonormal Systems
A.3 Linear Bounded and Compact Operators
A.4 Sobolev Spaces of Periodic Functions
A.5 Sobolev Spaces on the Unit Disc
A.6 Spectral Theory for Compact Operators in Hilbert Spaces
A.7 The Frechet Derivative
B Proofs of the Results of Section 2.7
References
Index
1.1 Examples oflnverse Problems
1.2 Ill-Posed Problems
1.3 The Worst-Case Error
1.4 Problems
2 Regularization Theory for Equations of the First Kind
2.1 A General Regularization Theory
2.2 Tikhonov Regularization
2.3 Landweber Iteration
2.4 A Numerical Example
2.5 The Discrepancy Principle of Morozov
2.6 Landweber's Iteration Method with Stopping Rule
2.7 The Conjugate Gradient Method
2.8 Problems
3 Regularization by Discretization
3.1 Projection Methods
3.2 Galerkin Methods
3.2.1 The Least Squares Method
3.2.2 The Dual Least Squares Method
3.2.3 The Bubnov-Galerkin Method for Coercive Operators
3.3 Application to Symm's Integral Equation of the First Kind
3.4 Collocation Methods
3.4.1 Minimum Norm Collocation
3.4.2 Collocation of Symm's Equation
3.5 Numerical Experiments for Symm's Equation
3.6 The Backus-Gilbert Method
3.7 Problems
4 Inverse Eigenvalue Problems
4.1 Introduction
4.2 Construction of a Fundamental System
4.3 Asymptotics of the Eigenvalues and Eigenfunctions
4.4 Some Hyperbolic Problems
4.5 The Inverse Problem
4.6 A Parameter Identification Problem
4.7 Numerical Reconstruction Techniques
4.8 Problems
5 An Inverse Problemin Electrical Impedance Tomography
5.1 Introduction
5.2 The Direct Problem and the Neumann-Dirichlet Operator
5.3 The Inverse Problem
5.4 The Factorization Method
5.5 Problems
6 An Inverse Scattering Problem
6.1 Introduction
6.2 The Direct Scattering Problem
6.3 Properties of the Far Field Patterns
6.4 Uniqueness of the Inverse Problem
6.5 The Factorization Method
6.6 Numerical Methods
6.6.1 A Simplified Newton Method
6.6.2 A Modified Gradient Method
6.6.3 The Dual Space Method
6.7 Problems
A Basic Facts from Functional Analysis
A.1 Normed Spaces and Hilbert Spaces
A.2 Orthonormal Systems
A.3 Linear Bounded and Compact Operators
A.4 Sobolev Spaces of Periodic Functions
A.5 Sobolev Spaces on the Unit Disc
A.6 Spectral Theory for Compact Operators in Hilbert Spaces
A.7 The Frechet Derivative
B Proofs of the Results of Section 2.7
References
Index