趙巒嘯

趙巒嘯,博士,現任同濟大學海洋與地球科學學院教授、博士生導師。

基本介紹

  • 中文名:趙巒嘯
  • 畢業院校休斯敦大學
  • 學位/學歷:博士
  • 職業:教師
  • 專業方向:基於人工智慧的儲層參數預測和地質特徵刻畫
  • 職務:博士生導師
人物經歷,教育背景,工作經歷,研究興趣,科研項目,發表論文,教學情況,榮譽與獎勵,學術兼職,

人物經歷

教育背景

2010/8 –2014/5,休斯敦大學,地球物理學,博士
2007/9 –2010/3,同濟大學,地球物理學,碩士
2003/9 –2007/7,中國地質大學(武漢),地球物理學,學士

工作經歷

2021/12-至今,同濟大學海洋與地球科學學院教授、博導
2020/7-至今,同濟大學地球物理學專業,系主任
2018/8-至今,同濟大學地球物理學專業,博導
2018/1-至今,同濟大學,海洋與地球科學學院,副教授
2014/12 –2017/12,同濟大學,海洋與地球科學學院,助理研究員
2017/6-2017/9, 2018/1-2018/2, 道達爾勘探和生產研發中心(法國波城),訪問科學家
2014/5 –2014/8,BP石油,儲層地球物理研發中心(休斯敦),研發地球物理工程師(實習)
2013/5 –2013/8,BP石油,儲層地球物理研發中心(休斯敦),研發地球物理工程師(實習)
2012/5 –2012/8,ExxonMobil埃克森美孚,上游勘探開發研發中心地震多分量研發組(休斯敦),研發地球物理工程師(實習)
2011/5 –2011/8,馬士基石油Maersk Oil,全球地球科學技術支持中心(休斯敦),研發地球物理工程師(實習)

研究興趣

1.人工智慧地球物理勘探,基於機器學習和深度學習的儲層參數地震預測和地質特徵地震刻畫;
2.岩石物理和地質力學:實驗岩石物理、數字岩石物理、複雜多孔介質的模型表征、地質工程一體化研究
3.多源地學信息融合的人工智慧地質建模;海洋與地球科學大數據分析和挖掘
4.與地球能源有關的定量地震解釋、地震綜合刻畫相關研究; CO2封存、H2存儲地球物理相關研究;

科研項目

1.國家自然科學基金聯合基金重點項目,強非均質性地層的各向異性動靜態力學參數回響機理與地質力學評價方法,U23B20157,主持,2024/1-2027/12
2.國家自然科學基金面上項目,基於水力壓裂能量分析的頁岩儲層可壓裂性評價:物理機理和模型表征,42174134),主持,2022/1-2025/12
3.國家自然科學基金面上項目,不同成熟度陸相有機質泥頁岩地震岩石物理回響機理,41874124,主持,2019/1-2022/12
4.國家重點研發計畫課題,基於南海大洋鑽探岩石物理分析的彈性波地震數據定量解釋研究,主持,2018/8-2022/08
5.國家重點研發計畫子課題,CO2驅油與封存多尺度岩石物理特性與三維地震回響特徵研究,主持,2023/12-2028/12
6.國際合作科研項目(法國道達爾勘探和生產研發中心資助),Machine Learning Based Carbonate Reservoir Properties Prediction(基於機器學習的碳酸鹽岩儲層參數預測, 主持, 2018/10-2020/6.
7.國際合作科研項目(法國道達爾勘探和生產研發中心資助),Petrophysical and Geophysical characterization of pore types in carbonates, 主持,2017/3-2018/6
9.企業委託科研項目,基於疊前三維地震正演和機器學習的礁灘相儲層非均質性分布預測,主持,2021/6-2022/6,
10.企業委託科研項目,基於深度學習的岩性預測和儲層刻畫,主持,2019/10-2020/10,
11.企業委託科研項目,機器學習框架下中深層碳酸鹽岩儲層地震刻畫新方法,主持,2019/09-2020/05,
12.企業委託科研項目,非常規頁岩油氣儲層參數的智慧型預測,2018/03-2019/10
13.中科院戰略先導科技專項,深儲層岩石物理回響機理,任務負責人,2017/1-2022/8
14.國家自然科學青年基金,地震波在非均質多孔介質分界面上的反射特徵及其對儲層刻畫的啟示, 41504087,主持,2016/1-2018/12
15.企業委託科研項目, 深層碳酸鹽岩岩溶儲層的彈性和衰減特徵的數字岩石物理表征技術,主持,2022/12-2023/12
16.企業委託科研項目,非均質體波致流體頻散與衰減模型研究,主持,2022/4-2023/12
17.企業委託科研項目,頁岩油數字岩心建模及地震甜點預測技術,主持,2023/3-2023/12
18.企業委託科研項目,裂縫性多孔介質岩石物理建模和非常規儲層可壓裂性評價研究,主持,2017/4-2018/12,
19.企業委託科研項目,不同成熟度有機質頁岩儲層地震岩石物理研究,主持,2015/10-2016/12

發表論文

2024
[81] Zhao, L., J. Liu, M. Xu*, Z. Zhu, Y. Chen, and J. Geng, 2024, Rock Physics guided machine learning for shear sonic log prediction, Geophysics, 89(1), D75-D87
[80] Zhao, L., X. Zhu, X. Zhao, C. You, M. Xu, T. Wang*, and J. Geng, 2024, Deep carbonate reservoir characterization using multi seismic attributes:A comparison of unsupervised machine learning approaches, Geophysics, 89 (2), B65-B82
[79] Yang, Z., H. Cao, L. Zhao, X. Yan, Y. Wang, and W. Zhu*, The Effects of Pore Structure on the Wave Dispersion and Attenuation Due to Squirt Flow: Dynamic Stress-Strain Simulation on a Simple Digital Pore-Crack Mode, Geophysics, 89(3)
[78] Chen, M*., J. Geng, and L. Zhao, A hybrid numerical model for coupled hydro-mechanical analysis during CO2 injection into heterogeneous unconventional reservoirs, Gas Science and Engineering, 205244
[77]Long, T., X. Qin, Q. Wei, L. Zhao*, Y. Wang, F. Chen, M. Myers, Y. Zheng, and D. Han, Quantifying the influences of clay-bound water on wave dispersion and attenuation signatures of shale: An experimental study, Geophysics, 89(2), 1-88
2023
[76] Zhao, L*., J. Zhu, X. Qin, R. Gong, Z. Cai, F. Zhang, D. Han, and J. Geng, Joint geochemisty-rock physics modeling: Quantifying the effects of thermal maturity on the elastic and anisotropic properties of organic shale, Earth-Science Reviews, 247,104627
[75] Yan, D., L. Zhao*, Y. Wang, Y. Zhang, Z. Cai, X. Song, F. Zhang, and J. Geng, 2023, Heterogeneity Indexes of unconventional reservoir shales: quantitatively characterizing mechanical properties and failure behaviors, International Journal of Rock Mechanics and Mining Sciences, 171, 105577
[74] Wang. J*, B. Ma, L. Zhao, P. Su*, and S. Wu, 2023, Rock physics diagnostics to characterize early diagenetic processes in hemipelagic calcareous ooze in the northern South China Sea margin, Marine Geophysical Research, 44, 20
[73]Liu, J., L. Zhao*, M. Xu, X. Zhao, Y. You, J. Geng, 2023, Porosity prediction from prestack seismic data via deep learning: Incorporating low-frequency porosity model, Journal of Geophysics and Engineering, 20, 1016–1029
[72] 耿建華*, 趙巒嘯, 麻紀強, 朱津琬, 姚秋糧, 高志前, 何治亮,2023,超深碳酸鹽岩油氣儲層岩石彈性性質高溫高壓超聲實驗研究,地球物理學報, 66(9), 3959-3974
[71] Qin, X., L. Zhao*, J. Zhu, and D. Han, 2023, Modeling the elastic characteristics of overpressure due to thermal maturation in organic shales, Advances in Geo-Energy Research 10 (3), 174-188
[70] Wang, Y., L. Zhao*, Z. Yang, H. Cao, and J. Geng, 2023, Rock Physics Modeling Elastic Properties of Multiscale Fractured Rocks, Geophysics, 88 (6), MR289–MR304.
[69] Gao, S., M. Xu, L. Zhao*, Y. Chen, J. Geng, 2023, Seismic predictions of fluids via supervised deep learning: Incorporating various class-rebalance strategies, Geophysics, 88 (4), M185-M200
[68] Zhao, L., Z. Cai, X. Qin*, Y. Wang, L. Teng, D. Han, F. Zhang, and J. Geng, 2023, An Empirical Elastic Anisotropy Prediction Model in Self-sourced Reservoir Shales and Its Influencing Factors Analysis, Geophysics, 88 (3), MR117-MR126
[67] Zhu, W., L. Zhao*, Z. Yang, H. Cao, Y. Wang, W. Chen, R. Chen, 2023, Stress Relaxing Simulation on Digital Rock: Characterize Attenuation due to Wave-induced Fluid flow and Scattering, Journal of Geophysical Research: Solid Earth, e2022JB024850
[66] Li, H, Q. Huang, L. Zhao*, Y. Wang, Z. Cai, J. Gao, and D. Han, 2023, The seismic dispersion and attenuation characteristics of organic shales, Geophysical Journal International, 232 (3), 1785-1802.
[65] Sun, S., J. Nie, B. Wang, L. Zhao, Z. He, H. Zhang, D. Chen, J. Geng*, 2023, Generating complete synthetic datasets for high‐resolution amplitude‐versus‐offset attributes deep learning inversion, Geophysical Prospecting, 71 (6), 891-913
[64] Hussein, A., L. Zhao*, Y. Chen, and J. Wang, 2023, Rock Physics characteristics of marine sediments in the South China Sea: link between the geological factors and elastic properties, Frontiers in Earth Science, 10, 931611
[63] Zou, C., L. Zhao*, F. Hong, Y. Chen, Y. Wang, and J. Geng, 2023, A comparison of machine-learning methods to predict porosity in carbonate reservoirs from seismic-derived elastic properties, Geophysics, 88 (2), B101-B120
[62] 何治亮*, 趙向原, 張文彪, 呂心瑞, 朱東亞,趙巒嘯, 胡松, 鄭文波, 劉彥鋒, 丁茜, 段太忠, 胡向陽, 孫建芳, 耿建華, 深層-超深層碳酸鹽岩儲層精細地質建模技術進展與攻關方向, 石油與天然氣地質, 2023, 44(1): 16-33 doi:10.11743/ogg20230102
[61] Sun, S., L. Zhao, H. Chen, Z. He, and J. Geng*, 2023, Pre-stack seismic inversion for elastic parameters using model-data-driven generative adversarial networks, Geophysics, 88 (2), M87-M103
[60] 趙巒嘯,麻紀強,李珂瑊,朱津琬,高志前、何治亮、耿建華*,2023,超深層碳酸鹽岩儲層地震岩石物理特徵和模型表征,地球物理學報,66(1),16-33
2022
[59] Qin, X, L. Zhao*, Z. Cai, Y. Wang, M. Xu, F. Zhang, D. Han, J. Geng, 2022, Compressional and shear wave velocities relationship in anisotropic organic shales, Journal of Petroleum Science and Engineering, 111070
[58] Ba, J., H. Zhu, L.Y. Fu*, and L. Zhao, 2022, Challenges in seismic rock physics, Journal of Geophysics and Engineering, 19 (6), 1367-1369
[57] Wu, S., B. Wang, L. Zhao, H. Liu, and J. Geng*, 2022, High‐efficiency and High‐precision Seismic Trace Interpolation for Irregularly Spatial Sampled Data by Combining an Extreme Gradient Boosting Decision Tree and Principal Component Analysis, Geophysical Prospecting, doi.org/10.1111/1365-2478.13270
[56] Qin, X*, D. Han, and L. Zhao, 2022, Measurement of Grain Bulk Modulus on Sandstone Samples from the Norwegian Continental Shelf, Journal of Geophysical Research: Solid Earth, e2022JB024550
[55] Wang, Y., L. Zhao*, C. Cao, Q. Yao, Z. Yang, H. Cao, and J. Geng, 2022, Wave-induced fluid pressure diffusion and anelasticity in partially saturated rocks: the influences of boundary conditions, Geophysics, 87(5), MR247-MR263
[54] Xu, M.. L. Zhao*, S. Gao, X. Zhu, and J. Geng, 2022, Joint use of multi-seismic information for lithofacies prediction via supervised convolutional neural networks, Geophysics, 87(5), M151-M162
[53] Wang, Y., L. Zhao*, D. Han, Q. Wei, Y. Zhang, H. Yuan, and J. Geng, 2022,Experimental Quantification of the Evolution of the Static Mechanical Properties of Tight Sedimentary Rocks during Increasing-amplitude Load and Unload Cycling, Geophysics, 87(2),MR73-MR83
[52] Cai, J*., L. Zhao, F. Zhang, and W. Wei, 2022, Advances in multiscale rock physics for unconventional reservoirs, Advances in Geo-Energy Research, 6 (4), 271-275
[51] Guo, J.,L. Zhao, X. Chen*, Z. Yang, H. Li, C. Liu, 2022, Theoretical modelling of seismic dispersion, attenuation, and frequency-dependent anisotropy in a fluid saturated porous rock with intersecting fractures, Geophysical Journal International, 230, 580-606
[50] An, M., F. Zhang*, K. Min, D. Elsworth, C. He, and L. Zhao, 2022,Frictional Stability of Metamorphic Epidote in Granitoid Faults Under Hydrothermal Conditions and Implications for Injection-Induced Seismicity,JGR-solid earth, 127 (3), e2021JB023136
[49] Zhang, Y., J. Ma, Y. Wang*, F. Wang, X. Li, and L. Zhao, 2022, Quantification of the Fracture Complexity of Shale Cores After Triaxial Fracturing, Frontiers in Earth Science, 10:863773.doi: 10.3389/feart.2022.863773
[48] Wang, Y., L. Niu, L. Zhao, B. Wang, Z. He, H. Zhang, D. Chen, and J. Geng*, 2022, Gaussian Mixture Model Deep Neural Network and Its Application in Porosity Prediction of Deep Carbonate Reservoir, Geophysics, 87 (2), M59-M72, doi.org/10.1190/geo2020-0740.1
[47] Wang, Y*, D. Han, L. Zhao, H. Li, T. Long, J. Hamutoko, 2022, Static and Dynamic Bulk Moduli of Deepwater Reservoir Sands: Influence of Pressure and Fluid Saturation, Lithosphere, 4266697, doi.org/10.2113/2022/4266697
[46] Li, S., K. Zhou, L. Zhao, Q. Xu, and J. Liu*, 2022, An improved lithology identification approach based on representation enhancement by logging feature decomposition, selection and transformation, Journal of Petroleum Science and Engineering, 109842
2021
[45] Zou, C., L. Zhao*, M. Xu, Y. Chen, and J. Geng, 2021, Porosity Prediction with Uncertainty Quantification from Multiple Seismic Attributes Using Random Forest, Journal of Geophysical Research: Solid Earth, 126(7), e2021JB021826
[44] Chen, Y., L. Zhao*, J. Pan, C. Li, M. Xu, K. Li, F. Zhang, and J. Geng, 2021, Deep carbonate reservoir characterization using multi-seismic attributes via machine learning with physical constraints, Journal of Geophysics and Engineering, 18(5), 761-775
[43] Nie, J., Z. Qu, Y. Cheng*, X. Wang, J. Zhu, S. Sun, L. Zhao, and J Geng*, 2021, Diagnosing of clay distribution in argillaceous sandstone by a rock physics template, Geophysical Prospecting, 69 (8-9), 1700-1715
[42] Zhao, L*., C. Zou, Y. Chen, W. Shen, Y. Wang, H. Chen, and J. Geng, 2021, Fluids and lithofacies prediction based on integration of well-log data and seismic inversion: a machine learning approach, Geophysics, 86(4), M151–M165
[41] Ren, J., Y. Wang*, D. Han, L. Zhao, T. Long, and S. Tang, 2021, Determining crack initiation stress in unconventional shales based on strain energy evolution, Journal of Geophysics and Engineering, 18(5), 642-652.
[40] Yuan, H*., Y. Wang, D. Han, H. Li, and L. Zhao, 2021, Velocity measurement of North Sea heavy oil sands under changing pressure and temperature, Journal of Petroleum Science and Engineering, 205, 108825.
[39] Guo, J., L. Zhao*, Z. Yang, and H. Li, 2021, Analytical model for rock effective elastic properties with aligned elliptical cracks embedded in transversely‐isotropic background, Geophysical Prospecting, 69,1515-1530
[38] An, M., F. Zhang*, E. Donstov, D. Elsworth, H. Zhu, and L. Zhao, 2021, Stress Perturbation Caused by Multistage Hydraulic Fracturing: Implications for Deep Fault Reactivation, International Journal of Rock Mechanics and Mining Sciences, 141, 104704
[37] 朱偉,趙巒嘯*,王一戎,2021, 數字岩心寬頻帶動態應力應變模擬方法及其對含裂隙緻密岩石頻散和衰減特徵的表征, 地球物理學報,64(6),2086-2096
[36]Zhao, L*., Y. Wang, Q. Yao, J. Geng, H. Li, H. Yuan, and D. Han, 2021, Extended Gassmann Equation with Dynamic Volumetric Strain: Modeling Wave Dispersion and Attenuation of Heterogenous Porous Rocks, Geophysics, 86(3), MR149-MR164
[35] Teillet, T., F. Fournier, L. Zhao*, J. Borgomano, F. Hong, 2021, Geophysical pore type inversion in carbonate reservoir: integration of cores, well-logs, and seismic data (Yadana field, offshore Myanmar), Geophysics, 86(3), B149-B164.
[34] Wang, Y., L. Zhao*, D. Han, A. Mitra, H. Li, ans S. Aldin, 2021, Anisotropic Dynamic and Static Mechanical Properties of Organic-rich Shale: The Influence of Stress, Geophysics,86(2), C51-C63
[33] 趙巒嘯,劉金水,姚雲霞,鐘鍇,麻紀強,鄒采楓,陳遠遠,付曉偉,朱曉軍,朱偉林,耿建華*, 2021, 基於隨機森林算法的陸相沉積烴源岩定量地震刻畫:以東海盆地長江坳陷為例,地球物理學報,64(2), 700-715
[32] Niu, L., J. Geng*, X. Wu, L. Zhao, and H. Zhang, 2021, Data-driven method for an improved linearised AVO inversion, Journal of Geophysics and Engineering, 18, 1-22
2020
[31] Li, H., L. Zhao*, D. Han, J. Gao, H. Yuan, and Y. Wang, 2020,Experimental study on frequency-dependent elastic properties of weakly consolidated marine sandstone: effects of partial saturation, Geophysical Prospecting, 68 (9), 2808-2824.
[30] 鐘廣法*,張迪,趙巒嘯,大洋鑽探天然氣水合物儲層測井評價研究進展,2020, 天然氣工業,40(8), 25-44
[29] Li, H*., D. Han, Q. Huang, L. Zhao, Q. Yao, and J. Gao, 2020, Precision analysis of dynamic force-deformation measurement: numerical modeling and experimental data, Journal of Geophysics and Engineering, 17(6), 980-992
[28] Wang, Y., L. Zhao*, D. Han, X. Qin, J. Ren, and Q. Wei, 2020, Micro-mechanical Analysis of the Effects of Stress Cycles on the Dynamic and Static Mechanical Properties of Sandstone, InternationalJournal of Rock Mechanics and Mining Sciences, 134,104431
[27] Yang, J., J. Geng*, and L. Zhao, 2020, A frequency-decomposed nonstationary convolutional model for amplitude-versus-angle-frequency forward waveform modeling in attenuative media, Geophysics,85(6), T301-T314.
[26] Yuan, H., D. Han, H. Li, L. Zhao*, and W. Zhang, 2020, The effect of rock frame on elastic properties of bitumen sands, Journal of Petroleum Science and Engineering, 194, 107460
[25] Li, H., D. Wang, J. Gao, M. Zhang, Y. Wang, L. Zhao*, Z. Yang, 2020, Role of saturation on elastic dispersion and attenuation of tight rocks: An experimental study. Journal of Geophysical Research: Solid Earth, 125(4),e2019JB018513.
[24] Zhao, L*., C. Cao, Q. Yao, Y. Wang, H. Li, H. Yuan, J. Geng, and D. Han, 2020, Gassmann Consistency for Different Inclusion-based Effective Medium Theories: Implications for Elastic interactions and Poroelasticity, Journal of Geophysical Research: Solid Earth, 125(3), e2019JB018328.
[23] Wang, Y., H. Li*, D. Han, L. Zhao, J. Ren, and Y. Zhang, 2020, A comparative study of the stress-dependence of dynamic and static moduli for sandstones, Geophysics, 85(4), MR179-MR190.
[22] 朱偉,趙巒嘯*,王晨晨,單蕊,2020,基於數字岩心動態應力應變模擬的非均勻孔隙介質波致流固相對運動刻畫,地球物理學報,63(6),2386-2399
[21] Zhou, K., J. Zhang, Y. Ren, Z. Huang, and L. Zhao*, 2020, A gradient boosting decision tree algorithm combining synthetic minority over-sampling technique for lithology identification, Geophysics, 85(4), WA147-WA158
[20] 陳樹民*, 韓德華, 趙海波, 陳豐, 王團, 唐曉花, 趙巒嘯, 秦玄, 2020,松遼盆地古龍頁岩油地震岩石物理特徵及甜點預測技術, 大慶石油地質與開發,39(3),107-116
[19] Zhao, L.*, Y. Wang, X. Liu, J. Zhang, Y. Liu, X. Qin, K. Li, and J. Geng, 2020, Depositional impact on the seismic elastic characteristics of the organic shale reservoir: A case study of Longmaxi-Wufeng shale in Fuling gas field, Sichuan Basin, Geophysics, 85(2), B23-B33.
2019
[18] Yuan, H*., D. Han, L. Zhao, Q. Huang, and W. Zhang, 2019, Attenuation analysis of heavy oil sands –based on lab measurements, Geophysics, 84(5), B299-B309
[17] Wang, J*., S. Wu, L. Zhao, W. Wang, J. Wei, and J. Sun, 2019, An effective method for shear-wave velocity prediction in sandstones, Marine Geophysical Research, 40 (4), 655-664
[16] Qin, X*., D. Han, and L. Zhao, 2019, Elastic characteristics of overpressure due to smectite-to-illite transition based on micro-mechanism analysis, Geophysics, 84(4), WA23-WA42.
2018
[15] Zhao, L*., X. Qin, J. Zhang, X. Liu, D. Han, J. Geng, and Y. Xiong, 2018, An effective reservoir parameter for seismic characterization of organic shale reservoir, Surveys in Geophysics, 2018, 39(3), 509-541
[14] Yuan, H*., D. Han, L. Zhao, Q. Huang, and W. Zhang, 2018, Rock physics characterization of bitumen carbonates: a case study, Geophysics, 83(3), B119-B132.
2017
[13] Zhao, L*., H. Yuan, J. Yang, D. Han, J. Geng, R. Zhou, H. Li, and Q. Yao, 2017, Mobility Effect on Poroelastic Seismic Signatures in Partially Saturated Rocks with Applications in Time-lapse Monitoring of a Heavy Oil Reservoir, Journal of Geophysical Research-Solid Earth, 122 (11), 8872-8891
[12] Zhao, L*., Q. Yao, D. Han, R. Zhou, J. Geng, and H. Li, 2017, Frequency- and angle- dependent poroelastic seismic analysis for highly attenuating reservoirs, Geophysical Prospecting, 65(6), 1630-1648.
[11] Zhu W*., L. Zhao, R. Shan, Modeling effective elastic properties of digital rocks using a new dynamic stress-strain simulation method, 2017, Geophysics, 82(6), MR163-MR174.
2016
[10] Zhao, L*., X. Qin, D. Han, J. Geng, Z. Yang, H. Cao, Rock-Physics modeling for the elastic properties of organic shale at different maturity stages, 2016, Geophysics, 81(5), D527-D541.
[9] Zhao, L*., Q. Yao, D. Han, F. Yan, and M. Nasser,2016, Characterizing the effect of elastic interactions on the effective elastic properties of porous, cracked rocks, Geophysical Prospecting, 64(1), 157-169.
[8] Li, H*., L. Zhao, D. Han, M. Sun, and Yu Zhang, 2016, Elastic properties of heavy oil sands: effects of temperature, pressure, and microstructure, Geophysics, 81(4), D453-464. SCI
[7] Li, H*., D. Han, H. Yuan, X. Qin, and L. Zhao, 2016, Porosity of heavy oil sand: laboratory measurement and bound analysis, Geophysics, 81(2), D83-D90.
2015
[6] Zhao, L*., D. Han, Q. Yao, R. Zhou and F. Yan, 2015, Seismic reflection dispersion due to wave-induced fluid flow in heterogeneous reservoir rocks, Geophysics, 80(3), D221-D235.
[5] Yao, Q*., D. Han, F. Yan, and L. Zhao, 2015, Modeling attenuation and dispersion in porous heterogeneous rocks with dynamic fluid modulus, Geophysics, 80(3), D183-D194.
2014
[4] Zhao, L*., J. Geng, J. Cheng, D. Han, and T. Guo,2014, Probabilistic lithofacies prediction from prestack seismic data in a heterogeneous carbonate reservoir, Geophysics, 79(5), M25-M34.
[3] Yan, F*., Han, D, Q. Yao, and L. Zhao, 2014, Prediction of seismic wave dispersion and attenuation from ultrasonic velocity measurements, Geophysics, 79(5), WB1-WB8.
2013
[2] Zhao, L*., M. Nasser, and D. Han, 2013, Quantitative geophysical pore type characterization and geological implications in carbonate reservoir, Geophysical Prospecting, 61(4), 827-841.
[1] Zhao, L*, J. Geng, S. Zhang, and D. Yang, 2008, 1-D Controlled source electromagnetic forward modeling for marine gas hydrates studies: Applied Geophysics, 5(2), 121-126.

教學情況

主講課程:
《岩石物理學》(本科生)、《計算機地學套用(MATLAB的地學套用)》(本科生)
《岩石物理與地質力學》(研究生)《深度學習與人工智慧基礎及其在地球物理中的套用》(研究生,承擔部分)、儲層地球物理學(研究生、承擔部分)
《地球物理學》全英文(博士生)《地球物理學進展》(博士研究生,承擔部分)

榮譽與獎勵

2016年,上海市“晨光計畫”
2017年,中國科協“青年人才托舉工程”
2018年8月,2018 SEG儲層地球物理研討會最佳口頭報告獎勵
2016年11月,獲第四屆全國岩石物理研討會論文一等獎
2014年8月,獲第三屆地震岩石物理研討會論文一等獎
2013年4月,獲美國休斯敦地質協會傑出學生獎(德克薩斯州一共5位)
2012年5月,獲休斯敦大學Milton Dobrin 捐贈基金(地球物理系最傑出學生)

學術兼職

地球物理SCI期刊Geophysical Prospecting副主編(2023-至今)
地球物理SCI期刊Journal of Geophysics and Engineering 副主編(2019-至今)
JGR-solid earth, Geophysics, Geophysical Prospecting, Interpretation, AAPG Bulletin, IEEE TGRS, IEEE GRSL,Journal of Applied Geophysics, Journal of Earth Sciences、地球物理學報等期刊審稿人
中國地球物理學會岩石物理專業委員會第一、二屆委員會委員兼副秘書長
Society of Exploration Geophysicists (SEG)會員
European Association of Geoscientists and Engineers (EAGE) 會員
American Association of Petroleum Geologists (AAPG) 會員.
Society of Petrophysicists and Well Log Analysts (SPWLA)會員

相關詞條

熱門詞條

聯絡我們