內容簡介
Recentyearshavebroughtarevivalofworkonstringtheory,whichhasbeenasourceoffascinationsinceitsoriginsnearlytwentyyearsago.Thereseemstobeawidelyperceivedneedforasystematic,pedagogicalexpositionofthepresentstateofknowledgeaboutstringtheory.Wehopethatthisbookwillhelptomeetthisneed.Togiveacomprehensiveaccountofsuchavasttopicasstringtheorywouldscarcelybepossible,evenintwovolumeswiththelengthtowhichthesehavegrown.Indeed,wehavehadtoomitmanyimportantsubjects,whiletreatingothersonlysketchily.Stringfieldtheoryisomittedentirely(thoughthesubjectofchapter11iscloselyrelatedtolight-conestringfieldtheory).Conformalfieldtheoryisnotdevelopedsystematically,thoughmuchofthebackgroundmaterialneededtounderstandrecentpapersonthissubjectispresentedinchapter3andelsewhere.
作品目錄
Preface
1Introduction
1.1Theearlydaysofdualmodels
1.1.1TheVenezianoamplitudeandduality
1.1.2High-energybehavioroftheVenezianomodel
1.1.3RamificationsoftheVenezianomodel
1.2Dualmodelsofeverything
1.2.1Dualityandthegraviton
1.2.2Unificationinhigherdimensions
1.2.3Supersymmetry
1.3Stringtheory
1.3.1Themasslesspointparticle
1.3.2Generalizationtostrings
1.3.3Constraintequations
1.4Stringinteractions
4.1Splittingofstrings
1.4.2Vertexoperators
1.4.3Useofvertexoperators
1.4.4Evaluationofthescatteringamplitude
1.4.5Themassofthegraviton
1.5Otheraspectsofstringtheory
1.5.1GravitationalWardidentities
1.5.2Openstrings
1.5.3Internalsymmetriesofopenstrings
1.5.4RecoveryoftheVenezianoamplitude
1.5.5ComparisonwithQCD
1.5.6Upitarityandgravity
1.6Conclusion
2Freebosonicstrings
2.1Theclassicalbosonicstring
2.1.1Stringactionanditssymmetries
2.1.2ThefreestringinMinkowskispace
2.1.3Classicalcovariantgaugefixingandfieldequations
2.2Quantization-oldcovariantapproach
2.2.1Commutationrelationsandmodeexpansions
2.2.2Virasoroalgebraandphysicalstates
2.2.3Vertexoperators
2.3Light-conegaugequantization
2.3.1Light-conegaugeandLorentzalgebra
2.3.2Constructionoftransversephysicalstates
2.3.3Theno-ghosttheoremandthespectrum-generatingalgebra
2.3.4Analysisofthespectrum
2.3.5Asymptoticformulasforleveldensities
2.4Summary
3Moderncovariantquantization
3.1Covariantpath-integralquantization
3.1.1Fazideev-P0povghosts
3.1.2Complexworld-sheettensorcalculus
3.1.3Quantizatlonoftheghosts3.2.1ConstructionofBRSTcharge
3.2.2CovariantcalculationoftheVirasoroanomaly
3.2.3Virasoro,conformalandgravitationalanomalies
3.2.4Bosonizationofghostcoordinates
3.3Globalaspectsofthestringworldsheet
3.4Stringsinbackgroundfields
3.4.1Introductionofabackgroundspa~~e-timemetric
3.4.2Weylinvariance
3.4.3Conformalinvarianceandtheequationsofmotion
3.4.4String-theoreticcorrectionstogeneralrelativity
3.4.5Inclusionofothermodes
3.4.6Thedilatonexpectationvalueandthestringcouplingconstant
3.5Summary
4World-sheetsupersymmetryinstringtheory
4.1Theclassicaltheory
4.1.1Globalworld-sheetsupersymmetry
4.1.2Superspace
4.1.3Constraintequations
4.1.4Boundaryconditionsandmodeexpansions
4.2Quantization-theoldcovariantapproach
4.2.1Commutationrelationsandmodeexpansions
4.2.2Super-Virasoroalgebraandphysicalstates
4.2.3Boson-emissionvertexoperators
4.3Light-conegaugequantization
4.3.1Thelight-conegauge
4.3.2No-ghosttheoremandthespectrum-generatingalgebra
4.3.3TheGSOconditions
4.3.4Locallysupersymmetricformoftheaction
4.3.5Superstringactionanditssymmetries
4.4Moderncovariantquantization
4.4.1Faddeev-Popovghosts
4.4.2BRSTsymmetry
4.4.3CovariantcomputationoftheVirasoroanomaly
4.5Extendedworld-sheetsupersymmetry
4.5.1TheN=2theory
4.5.2TheN=4theory
4.6Summary
4.ASuperYang-Millstheories
5Space-timesupersymmetryinstringtheory
5.1Theclassicaltheory
5.1.1Thesuperparticle
5.1.2Thesupersymmetricstringaction
5.1.3Thelocalfermionicsymmetry
5.1.4TypeIandtypeIIsuperstrings
5.2Quantization
5.2.1Light-conegauge
5.2.2Super-Poincar
5.3.2Closedsuperstrings
5.4Remarksconcerningcovariantquantization
5.5Summary
5.APropertiesofSO(2n)groups
5.BThespin(8)Cliffordalgebra
6Nonabeliangaugesymmetry
6.1Openstrings
6.1.1TheChan-Patonmethod
6.1.2Allowedgaugegroupsand:representations
6.2Currentalgebraonthestringworldsheet
6.3Heteroticstrings
6.3.1TheSO(32)theory
6.3.2TheEsxEstheory
6.4Toroidalcompactification
6.4.1Compactificationonacircle
6.4.2Fermionization
6.4.3Bosonizeddescriptionoftheheteroticstring
6.4.4Vertexoperatorrepresentations
6.4.5Formulasforthecocycles
6.4.6ThefullcurrentMgebra
6.4.7TheEsandspin(32)/Z2lattices
6.4.8Theheteroticstringspectrum
6.5Summary
6.AElementsofEs
6.BModularforms
7Treeamplitudes
7.1Bosonicopenstrings
7.1.1Thestructureoftreeamplitudes
7.1.2Decouplingofghosts
7.1.3Cyclicsymmetry
7.1.4Examples
7.1.5Tree-levelgaugeinvariance
7.1.6Thetwistoperator
7.2Bosonicclosedstrings
7.2.1Constructionoftreeamplitudes
7.2.2Examples
7.2.3Relationshiptoopen-stringtrees
7.3SuperstringsintheRNSformulation
7.3.1Open-stringtreeamplitudesinthebosonicsector
7.3.2TheF1picture
7.3.3Examples
7.3.4Treeamplitudeswithonefermionline
7.3.5Fermion-emissionvertices
7.4Superstringsinthesupersymmetricformulation
7.4.1Masslessparticlevertices
7.4.2Open-stringtrees
7.4.3Closed-stringtrees
7.4.4Heterotic-stringtrees
7.5Summary
7.ACoherent-statemethodsandcorrelationfunctions
Bibliography
Index