譚建宇,吉林省長春市人。九三學社社員,工學博士,教授/博士生導師,現任哈爾濱工業大學(威海)新能源學院院長,山東省政協委員。
基本介紹
- 中文名:譚建宇
- 國籍:中國
- 民族:漢族
- 出生地:吉林長春
- 職業:教師
- 畢業院校:哈爾濱工業大學
- 職稱:教授
簡介,簡歷,擔任職務,研究方向,科研項目,論著成果,
簡介
2006年7月至哈爾濱工業大學威海校區從事教學和科研工作。2007年破格晉升為副教授,2008年被評為碩士生導師,2010年評為博士生導師。入選2012年教育部新世紀人才支持計畫。《Numerical Heat Transfer》、《Heat Transfer Research》國際期刊審稿人、《中國電機工程學報》審稿專家、中國宇航協會會員、國家自然科學基金通訊評審專家、山東省科技成果評審專家、山東省科技攻關項目評審專家、教育部創新團隊、國家自然科學基金委創新研究群體成員。
簡歷
學習簡歷
1994年09月—1998年07月 東北電力大學 動力工程專業 本科
2000年09月—2002年07月 哈爾濱工業大學 工程熱物理 碩士
2002年09月—2006年07月 哈爾濱工業大學 工程熱物理 博士
工作簡歷
1998年07月—2000年09月 吉林省火電一公司 技術員
2006年07月—2007年09月 哈爾濱工業大學(威海)熱能工程系 講師
2007年09月—2012年11月 哈爾濱工業大學(威海)熱能工程系 副教授
2008年05月—至今 哈爾濱工業大學(威海)熱能工程系 碩導
2010年05月—至今 哈爾濱工業大學(威海)熱能工程系 博導
2012年11月—至今 哈爾濱工業大學(威海)熱能工程系 教授
擔任職務
山東省政協委員
哈爾濱工業大學(威海) 新能源學院院長
哈爾濱工業大學(威海) 學術委員會 常委
教育部新世紀人才
山東省中青年科學家、威海市有突出貢獻的中青年專家
中國宇航協會會員
教育部創新團隊、國家自然科學基金委創新研究群體科研骨幹
《Numerical Heat Transfer》、《Heat Transfer Research》國際期刊審稿人、《中國電機工程學報》審稿專家;
國家自然科學基金通訊評審專家、山東省科技成果評審專家、山東省科技攻關項目評審專家、教育部創新團隊、國家自然科學基金委創新研究群體成員。
研究方向
1. 強化傳熱技術、新型熱控技術開發(太空飛行器熱控制、動力電池熱管理)
2. 清潔能源利用技術(太陽能熱利用、煤氣化)
3. 儲能及節能技術開發
科研項目
發表科技論文80餘篇,其中SCI檢索60餘篇,SCI他引300餘次,ESI高被引論文5篇,專利十餘項,主持國家自然科學基金重點項目、面上項目、青年基金共4項,主持中央軍委裝備部預研項目1項,國家“863計畫”一級子課題1項,軍民品橫向協作項目30餘項。
1、熱輻射傳輸幾何反演的無格線法研究(國家自然科學基金青年基金,No. 50706010)
2、梯度折射率介質內瞬態矢量輻射傳輸機理及其數值模擬(國家自然科學基金面上項目,No. 51076038)
3、整體煤氣化聯合循環顯熱回收設備的研究(國家“863計畫”項目子課題,No. 2007AA05Z2461)
4、微尺度輻射特性及其調控機理(國家自然科學基金重點項目,No. 50836002)
5、輻射傳輸與流動控制(國家自然科學基金委創新研究群體科學基金,No. 51121004)
6、基於k分布的高溫氣體輻射溫度場及濃度場聯合反演研究(山東省中青年科學家獎勵基金,No. 2009BSA10007)
7、紅外及可見光波段內人工微粗糙表面輻射特性研究(教育部新世紀人才基金,No. NCET-12-0152)
8、固體材料高溫基礎輻射物性的實驗測量與理論建模(國家自然科學基金重點項目,No. 51336002 )
9、高溫高壓液體燃料輻射熱物性實驗測量與第一性原理模擬(國家自然科學基金面上項目,No. 51576052)
論著成果
1) Temperature-dependent optical constants of liquid isopropanol, n-butanol and n-decane[J]. Applied Optics, 2018, 57(12): 3303-3311. (SCI、EI檢索,IF=1.791)
2) Wavelength and concentration-dependent optical constants of NaCl, KCl, MgCl2, CaCl2, and Na2SO4 multi-component mixed-salt solutions[J]. Applied Optics, 2017, 56(27): 7662-7671. (SCI、EI檢索,IF=1.791)
3) Infrared optical constants of liquid palm oil and palm oil biodiesel determined by the combined ellipsometry-transmission method[J]. Applied Optics, 2017, 56(18): 5156-5163. (SCI、EI檢索,IF=1.791)
4) Ab Initio Molecular Dynamics Study of Temperature and Pressure-Dependent Infrared Dielectric Functions of Liquid Methanol[J]. AIP Advances, 2017, 7(3): 035115. (SCI檢索,IF=1.653)
5) Hamiltonian adaptive resolution molecular dynamics simulation of infrared dielectric functions of liquids[J]. Journal of Applied Physics, 2018, 123(20): 205103. (SCI、EI檢索,IF=2.176)
6) Progress in concentrated solar power technology with parabolic trough collector system: a comprehensive review.Renewable and Sustainable Energy Reviews,2017,79:1314–1328(SCI、EI,IF=8.050,Top期刊)
7) Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187: 255-266. (SCI、EI檢索,IF=2.419)
8) Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 196: 94-102. (SCI、EI檢索,IF=2.419)
9) Radiative heat transfer in solar thermochemical particle reactor: A comprehensive review.Renewable and Sustainable Energy Reviews,2017,73:935–949(SCI、EI,IF=8.050,Top期刊)
10) Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting.Solar Energy,2017,144:185–202(SCI、EI,IF=4.018)
11) Energy storage efficiency analyses of CO2reforming of methane in metal foam solar thermochemical reactor.Applied Thermal Engineering,2017,111:1091–1100(SCI、EI,IF=3.356)
12) Investigation of optical properties and radiative transfer of TiO2nanofluids with the consideration of scattering effects.International Journal of Heat and Mass Transfer,2017,115:1103–1112.(SCI、EI,IF=3.458,Top期刊)
13) Optical constant measurements of solar thermochemical reaction catalysts and optical window.Optik,2017,131:323–334(SCI、EI,IF=0.835)
14) Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics.Applied Energy,2016,164:411–424(SCI、EI,IF=7.182,SCI他引18次,入選ESI高引,Top期刊)
15) Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube.Energy,2016,114:275–292(SCI、EI,IF=4.520,SCI他引1次,Top期刊)
16) Transient thermal performance response characteristics of porous-medium receiver heated by multi-dish concentrator.International Communications in Heat and Mass Transfer,2016,75:36-41(SCI、EI,IF=3.718)
17) Thermochemical performance analysis of solar driven CO2methane reforming.Energy,2015,91:645–654(SCI、EI,IF=4.520Top期刊)
18) Effects of glass cover on heat flux distribution for tube receiver with parabolic trough collector system.Energy Conversion and Management,2015,90:47–52(SCI、EI,IF=5.589入選ESI高引論文,Top期刊)
19) Effects of key factors on solar aided methane steam reforming in porous medium thermochemical reactor.Energy Conversion and Management,2015,103:419–430(SCI、EI,IF=5.589Top期刊)
20) Proposal of a shape layout of trapezoid cavity receiver to improve optical efficiency.Heat Transfer Research,2015,46(5),429–446(SCI、EI,IF=0.477)
21) Unsteady state thermochemical performance analyses of solar driven steam methane reforming in porous medium reactor.Solar Energy,2015,122:1180–1192(SCI、EI,IF=4.018)
22) 水和重水紅外吸收光譜的Car-Parrinello分子動力學模擬[J]. 科學通報, 2015, 60(31):3014-3020.
23) 生物柴油光學常數的雙光程法實驗測量[J]. 雷射與光電子學進展, 2015, 52(5):122-128.
24) Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean. Optics Express, 2015, 23(19): 24274-24289. (SCI、EI檢索,IF=3.356)
25) Investigation of the spectral reflectance and bidirectional reflectance distribution function of sea foam layer by the Monte Carlo method. Applied optics, 2015, 54(33): 9863-9874. (SCI、EI檢索,IF=1.791)
26) Monte Carlo method for polarized radiative transfer in gradient-index media. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 152: 114–126(SCI、EI檢索,IF=2.645)
27) Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas. Energy Conversion and Management, 83: 159-166, 2014(SCI、EI收錄)
28) Numerical analysis of hydrogen production via methane steam reforming in porous media solar thermochemical reactor using concentrated solar irradiation as heat source. Energy Conversion and Management,87:956-964,2014(SCI、EI, IF=4.380)
29) Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas,Energy Conversion and Management,83:159-166,2014(SCI、EI, IF=4.380)
30) Thermal performance analyses of porous media solar receiver with different irradiative transfer models,International Journal of Heat and Mass Transfer,78:7-16,2014(SCI、EI, IF=2.383)
31) On the derivation of vector radiative transfer equation for polarized radiative transport in graded index media. Journal of Quantitative Spectroscopy & Radiative Transfer. 2012, 113(3):239-250. (SCI、EI收錄, IF-3.193)
32) A deficiency problem of the least squares finite element method for solving radiative transfer in strongly inhomogeneous media. Journal of Quantitative Spectroscopy & Radiative Transfer. 2012, 113(12):1488-1502. (SCI、EI收錄, IF-3.193)
33) 考慮熱輻射效應的泡沫金屬有效導熱係數數值分析. 中國電機工程學報,2012.1: 104-109.
34) Least-squares radial point interpolation collocation meshless method for radiative heat transfer. Journal of Heat Transfer –Transactions of the ASME.2007, 129(5): 669-673.(SCI、EI收錄,IF-1.202)
35) Meshless local Petrov-Galerkin approach for coupled radiative and conductive heat transfer. International Journal of Thermal Sciences. 2007, 46(7): 672-681.(SCI、EI收錄,IF-1.048)
36) Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media. Journal of Quantitative Spectroscopy & Radiative Transfer. 2007, 103(3):545-557. (SCI、EI收錄,IF-1.972)
37) Meshless method for geometry boundary identification problem of heat conduction. Numerical Heat Transfer PART B. 2009, 55(2): 135-154.(SCI、EI收錄, IF-1.282)
38) Comparative study on accuracy and solution cost of the first/second-order radiative transfer equations using the meshless method. Numerical Heat Transfer PART B. 2009, 55(4):324-337.(SCI收錄,IF-1.282)
39) Inverse geometry design of radiating enclosure filled with participating media using meshless method. Numerical Heat Transfer PART A. 2009, 56(2): 132-152.(SCI、EI收錄,IF-1.119)
40) 管道內壁侵蝕形狀識別的無格線法研究. 工程熱物理學報, 2010,31: 124-126.
41) Geometric optimization of a radiation-conduction heating device using meshless method. International Journal of Thermal Sciences. 2011, 50(10): 1820-1831.(SCI、EI收錄,IF-2.142)
42) Infrared radiative properties of two-dimensional square optical black holes. J. Quantitative Spectroscopy & Radiative Transfer,2011,112 (16): 2584-2591.
43) Infrared radiative properties of two-Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media. Journal of Quantitative Spectroscopy & Radiative Transfer. 2011, 112(16):2584-2591. (SCI、EI收錄, IF-3.193)