蘭艷艷

蘭艷艷,女,1982年10月出生,副研究員。2001年9月至2005年7月山東大學數學科學學院統計專業本科,獲得理學學士學位;2005年9月保送至在中國科學院數學與系統科學研究院碩博連讀,師從馬志明院士,獲得機率論與數理統計專業博士學位;2011年7月開始在中國科學院計算技術研究所任職助理研究員;2013年10月被聘為中國科學院計算技術研究所副研究員。

主要從事機器學習、數據挖掘方面的研究,特別是在排序學習以及統計學習理論的研究方面,做出了一系列研究成果。已經在ICML,NIPS,SIGIR,WWW,CIKM,WSDM,UAI等本領域頂級國際會議上發表錄用論文10餘篇,其中排序學習的工作獲得SIGIR2012的最佳學生論文獎。 擔任SIGIR,KDD,AIRS,CCIR,TKDE,TIST,PRL,計算機學報等會議和期刊的程式委員會委員或審稿人。

基本介紹

  • 中文名:蘭艷艷
  • 出生日期:1982年10月
  • 職業:副研究員
  • 畢業院校:山東大學
基本信息,簡歷,研究方向,代表論著,科研項目,學科類別,所屬部門,專家類別,

基本信息

姓名 蘭艷艷
性別 女
職稱 副研究員
研究方向 機器學習,排序學習,統計學習理論,數據挖掘

簡歷

作為項目負責人,主持國家自然科學青年基金項目1項;作為骨幹成員參與國家863計畫項目,973子課題和多項國家自然科學基金項目。

研究方向

機器學習,排序學習,統計學習理論,數據挖掘

代表論著

[1] Yadong Zhu, Yanyan Lan, Jiafeng Guo, Pan Du, Xueqi Cheng, A Novel Learning to Rank Framework for Topic-Focused Text Summarization. Proceedings of the IEEE International Conference on Data Mining 2013 (ICDM’13), Dallas, Texas, USA, 2013.
[2] Yanyan Lan, Shuzi Niu, Jiafeng Guo, Xueqi Cheng, Is Top-k Sufficient for Ranking? Proceedings of the 22th ACM Conference on Information and Knowledge Management (CIKM’13), San Francisco, USA, 2013.
[3] Shuzi Niu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng, Stochastic Rank Aggregation. Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI’13), Washington, USA, 2013.
[4] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Chaosheng Fan, and Xueqi Cheng, Informational Friend Recommendation in Social Media. Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’13), Dublin, Ireland, 2013.
[5] Chaosheng Fan, Yanyan Lan, Jiafeng Guo, Zuoquan Lin, and Xueqi Cheng, Collaborative Factorization for Recommender Systems. Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’13), Dublin, Ireland, 2013.
[6] Shuzi Niu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng, 自適應層次Top-k 排序學習模型, Proceedings of the 19th China Conference on Information Retrieval (CCIR’13), Shanxi, China, 2013.
[7] Yadong Zhu, Jiafeng Guo, Yanyan Lan, Xueqi Cheng, Xiaoming Yu, 基於時空局部性的層次化查詢結果快取機制。Proceedings of the 19th China Conference on Information Retrieval (CCIR’13), Shanxi, China, 2013.
[8] Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng, A Biterm Topic Model for Short Texts. Proceedings of the 22nd International World Wide Web ConferenceRio Ode Karo, Brazil, 2013.
[9] Lu Bai, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng, Group Sparse Topical Coding: From Code to Topic, Proceedings of the 6th International conference on Web Search and Data Mining
[10] Xiaofei Zhu, Jiafeng Guo, Xueqi Cheng, and Yanyan Lan, and Volfgang Nejdl, Recommending High Utility Query via Session-Flow Graph, Proceedings of the 34th European Conference on Information Retrieval
[11] Xiaofei Zhu, Jiafeng Guo, Xueqi Cheng and Yanyan Lan. A Two-Step Absorbing Random Work Based High Utility Query Recommendation, Journal of Computer Research and Development, 2013.
[12] Yanyan Lan, Jiafeng Guo, Xueqi Cheng, and Tie-Yan Liu. Statistical Consistency of Ranking Methods in A Rank-Differentiable Probability Space, Proceedings of Neural Information Processing Systems
[13] Shuzi Niu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng, A New Probabilistic Model for Top-k Ranking Problem, Proceedings of The 21th ACM Conference on Information and Knowledge Management
[14] Xiaofei Zhu, Jiafeng Guo, Xueqi Cheng, and Yanyan Lan, More Than Relevance: High Utility Query Recommendation By Mining Users' Search Behaviors, Proceedings of The 21th ACM Conference on Information and Knowledge Management
[15] Shuzi Niu, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng, Top-k Learning to Rank: Labeling, Ranking and Evaluation. Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’12)Portland, Oregon, USA, 2012. (Best Student Paper Award)
[16] Yadong Zhu, Yuanhai Xue, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng, Xiaoming Yu. Exploring and Exploiting Proximity Statistic for Information Retrieval Model. Proceedings of the 8th Asia Information Retrieval Societies Conference (AIRS’12), pp: 1-13, Tianjin, China, 2012.
[17] Shengxian Wan, Jiafeng Guo, Yanyan Lan, and Xueqi cheng, 基於傳播模擬的訊息流行度預測。Proceedings of the 18th China Conference on Information Retrieval (CCIR’12), Jiangxi, China, 2012.
[18] Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhiming Ma, and Hang Li, Ranking Measures and Loss Functions in Learning to Rank. Proceedings of the 24th Annual Conference on Neural Information Processing Systems Foundation (NIPS’09)
[19] Yanyan Lan, Tie-Yan Liu, Zhiming Ma, and Hang Li, Generalization Analysis of Listwise Learning-to-Rank Algorithms. Proceedings of the 26th International Conference on Machine Learning (ICML’09),
[20] Yanyan Lan, Tie-Yan Liu, Zhiming Ma, and Hang Li, Query-Level Stability and Generalization in Learning to Rank. Proceedings of the 25th International Conference on Machine Learning (ICML’08)

科研項目

[1] 國家自然科學青年基金項目“基於用戶評價準則的排序學習算法與理論研究”
[2] 國家863項目子課題“海量Web數據內容管理、分析挖掘技術與大型示範套用”
[3] 國家973項目子課題“社交網路演化的理論和方法研究”
[4] 國家自然科學重點基金項目“WEB搜尋與挖掘的新理論與方法--支持輿情監控的Web搜尋與挖掘的理論與方法研究”

學科類別

計算機軟體與理論

所屬部門

網路數據科學與工程重點實驗室

專家類別

副高

相關詞條

熱門詞條

聯絡我們