舒爾茲—齊姆分布即指數分布,在機率理論和統計學中,指數分布(也稱為負指數分布)是描述泊松過程中的事件之間的時間的機率分布,即事件以恆定平均速率連續且獨立地發生的過程。
基本介紹
- 中文名:舒爾茲一齊姆分布
- 外文名:Schulz-Zim distribution
- 所屬學科:機率理論和統計學
- 又稱:指數分布
舒爾茲—齊姆分布簡介,舒爾茲—齊姆分布實例,套用,
舒爾茲—齊姆分布簡介
舒爾茲一齊姆分布又稱指數分布,在機率理論和統計學中,指數分布是描述泊松過程中的事件之間時間的機率分布,指事件以恆定平均速率連續且獨立地發生的過程。 這是伽馬分布的一個特殊情況。 它是幾何分布的連續模擬,它具有無記憶的關鍵性質。 除了用於分析泊松過程外,還可以在其他各種環境中找到。
指數分布與分布指數族的分類不同,後者是包含指數分布作為其成員之一的大類機率分布,也包括常態分配,二項分布,伽馬分布,泊松分布等等。
指數函式的一個重要特徵是無記憶性(Memoryless Property,又稱遺失記憶性)。這表示如果一個隨機變數呈指數分布,當s、t>0時有P(T>t+s|T>t)=P(T>s)。即如果T是某一元件的壽命,已知元件使用了t小時,它總共使用至少s+t小時的條件機率,與從開始使用時算起它使用至少s小時的機率相等。
舒爾茲—齊姆分布實例
在機率論和統計學中,指數分布(Exponential distribution)是一種連續機率分布。指數分布可以用來表示獨立隨機事件發生的時間間隔,比如旅客進機場的時間間隔、中文維基百科新條目出現的時間間隔等等。
許多電子產品的壽命分布一般服從指數分布。有的系統的壽命分布也可用指數分布來近似。它在可靠性研究中是最常用的一種分布形式。指數分布是伽瑪分布和威布爾分布的特殊情況,產品的失效是偶然失效時,其壽命服從指數分布。
指數分布可以看作當威布爾分布中的形狀係數等於1的特殊分布,指數分布的失效率是與時間t無關的常數,所以分布函式簡單。
套用
指數分布套用廣泛,在日本的工業標準和美國軍用標準中,半導體器件的抽驗方案都是採用指數分布。此外,指數分布還用來描述大型複雜系統(如計算機)的平均故障間隔時間MTBF的失效分布。但是,由於指數分布具有缺乏“記憶”的特性.因而限制了它在機械可靠性研究中的套用,所謂缺乏“記憶”,是指某種產品或零件經過一段時間t0的工作後,仍然如同新的產品一樣,不影響以後的工作壽命值,或者說,經過一段時間t0的工作之後,該產品的壽命分布與原來還未工作時的壽命分布相同,顯然,指數分布的這種特性,與機械零件的疲勞、磨損、腐蝕、蠕變等損傷過程的實際情況是完全矛盾的,它違背了產品損傷累積和老化這一過程。所以,指數分布不能作為機械零件功能參數的分布形式。
指數分布雖然不能作為機械零件功能參數的分布規律,但是,它可以近似地作為高可靠性的複雜部件、機器或系統的失效分布模型,特別是在部件或機器的整機試驗中得到廣泛的套用。
指數分布的圖形表面上看與冪律分布很相似,實際兩者有極大不同,指數分布的收斂速度遠快過冪律分布。