自組織納米材料

《自組織納米材料》是一本介紹納米材料的圖書。

基本介紹

  • 中文名:自組織納米材料
  • 作者:MotonariAdachi,
  • 出版社:科學出版社
  • ISBN: 9787030187925 
過去的幾十年里,納米結構新穎的系統性能在自然科學的各個領域中得到廣泛認可,新技術的不斷發展吸引了各個領域的科學家投入到與之相關的研究中。要全面實現納米科學與技術的巨大套用前景,面臨的重要挑戰就是尋找在原子尺度上調製排列結構的方法以及構造原子、介觀、巨觀各尺度層次的材料。本書包含了大量通過化學、仿生學途徑並運用自組織機制合成納米材料並產生不同尺度的組件的方法。本書介紹了納米結構自組裝領域從基礎理論到相關套用的大量令人鼓舞的最新進展,可供物理學、化學、生物學、工程和材料科學領域中科研人員和研究生參考。
本書目錄:
Preface
1 Self-Assembled Si1-xGex Dots and Islands
Jean-Marc Baribeau, Nelson L. Rowell, and David J. Lockwood
1.1 Introduction
1.2 Si1-xGex Island Growth
1.2.1 Growth Modes in Heteroepitaxy
1.2.2 Si1-xGex Island Growth and Shape Evolution
1.2.3 Si1-xGex Island Composition and Strain Distribution
1.3 Stacked Si1-xGex Islands
1.3.1 Development of Morphological Instabilities in Heteroepitaxy
1.3.2 Synthesis, Structure, and Vertical Correlation
1.3.3 Vibrational Properties
1.3.4 Optical Properties
1.4 Engineering of Si1-xGex Islands
1.4.1 Influence of Surface Morphology
1.4.2 Influence of Adsorbed Species
1.5 Applications of Si1-xGex Islands and Dots
1.5.1 Photodetectors
1.5.2 Other Applications
1.6 Summary and Future Prospects
References
2 Synthesis of Titania Nanocrystals: Application for Dye-Sensitized Solar Cells
Motonari Adachi, Yusuke Murata, Fumin Wang, and Jinting Jiu
2.1 Formation of Titania Nanocrystals by Surfactant-Assisted Methods
2.1.1 Introduction: How to Control Morphology and Functionalize Ceramic Materials
2.1.2 Formation of Network Structure of Single Crystalline TiO2 Nanowires by the “Oriented Attachment” Mechanism
2.1.3 Morphological Control of Anatase Nanocrystals Using Dodecanediamine as a Surfactant
2.2 Application of TiO2 Network of Single-Crystalline Nanowires for Dye-Sensitized Solar Cells
2.2.1 Introduction
2.2.2 How to Make the Dye-Sensitized Solar Cells
2.2.3 Characterization of the Solar Cells Made of Network of Single-Crystalline Anatase Exposing Mainly the {101} Plane
2.3 Summary
References
3 Soft Synthesis of Inorganic Nanorods, Nanowires,and Nanotubes
Shu-Hong Yu and Yi-Tai Qian
3.1 Introduction
3.2 An Overview: Emerging Synthetic Routes for the Synthesis of Low-Dimensional Nanocrystals
3.2.1 “Hard” Approaches
3.2.2 “Soft” Approaches
3.3 Soft Synthesis of Low-Dimensional Nanocrystals
3.3.1 Hydrothermal/Solvothermal Processes
3.3.2 Synthesis of Semiconductor Nanorods/Nanowires by Solution-Liquid-Solid Mechanism
3.3.3 Capping Agents/Surfactant-Assisted Soft Synthesis
3.3.4 Bio-Inspired Approach for Complex Superstructures
3.3.5 Oriented Attachment Growth Mechanism
3.4 Summary and Outlook
References
4 Assembly of Zeolites and Crystalline Molecular Sieves
Jennifer L. Anthony and Mark E. Davis
4.1 Introduction
4.2 Thermodynamics of Synthesis Processes
4.3 Kinetics of Synthesis Processes
4.4 Assembly Processes
4.4.1 Proposed Mechanisms for Zeolite Assembly
4.4.2 Metal-Ion-Assisted Assembly Processes
4.5 Components of Synthesis
4.5.1 Organic Components
4.5.2 Inorganic Components
4.6 Chirality: Can a “Designer” Zeolite Be Synthesized?
4.7 Summary
References
5 Molecular Imprinting by the Surface Sol-Gel Process:
Templated Nanoporous Metal Oxide Thin Films for
Molecular Recognition
Seung-Woo Lee and Toyoki Kunitake
5.1 Introduction
5.2 Surface Sol-Gel Process
5.2.1 Preparation of Amorphous Metal Oxide Thin Films
5.2.2 Rich Variety of Organic Components in
Nanohybrid Layers
5.3 Molecular Imprinting in Amorphous Metal Oxide Films
5.3.1 Incorporation and Removal of Templates
5.3.2 Stability and Selectivity of Imprinted Sites
5.3.3 Nature of Imprinted Sites for Guest Binding
5.3.4 Multifunctional Nature of Imprinted Cavity
5.3.5 Varied Molecular Selectivity
5.4 Practical Potentials
5.4.1 Recognition of Biological Molecules
5.4.2 Contrivance for High Sensitivity
5.4.3 Recognition of Coordination Geometry
5.4.4 Nanoporous Thin Films with Ion-Exchange Sites
5.4.5 Direct Observation of Imprinted Cavity-Physical Cavity
Versus Topological Cavity
5.5 Unsolved Problems and Future Prospects
References
6 Fabrication, Characterization, and Applications of
Template-Synthesized Nanotubes and Nanotube Membranes
Punit Kohli and Charles R. Martin
6.1 Introduction
6.2 Nomenclature
6.3 Template Synthesis of Nanotubes
6.4 Silica Nanotubes
6.4.1 Attaching Different Functional Groups to the Inside Versus Outside Surfaces
6.4.2 Nanotubes for Chemical and Bioextraction and Biocatalysis: Demonstration of Potential
Drug Detoxification Using Nanotubes
6.5 Template Synthesis of Nano Test Tubes
6.6 Nanotube Membranes for Bioseparations
6.6.1 Antibody-Functionalized Nanotube Membranes for
Selective Enantiomeric Separations
6.6.2 Functionalized Nanotube Membranes with
“Hairpin”-DNA Transporter with Single-Base
Mismatch Selectivity
6.7 Conical Nanotubes: Mimicking Artificial Ion Channel
6.8 Conclusions
References
7 Synthesis and Characterization of Core-Shell
Structured Metals
Tetsu Yonezawa
7.1 Introduction
7.2 Preparation of Core-Shell Bimetallic Nanoparticles
7.2.1 Preparation Procedures
7.2.2 Successive Reduction of the Corresponding Two
Metal Ions
7.2.3 Simultaneous Reduction of the Corresponding Two
Metal Ions
7.2.4 Other Systems
7.3 Characterization of Core-Shell Bimetallic Nanoparticles
7.3.1 X-ray Characterization
7.3.2 Electron Microscopic Observations
7.3.3 UV-vis Spectroscopy
7.3.4 IR Spectroscopy of Chemical Probes
7.4 Summary
References
8 Cobalt Nanocrystals Organized in Mesoscopic Scale
Marie-Paule Pileni
8.1 Introduction
8.2 Self-Organization of Cobalt Nanocrystals
8.3 Collective Magnetic Properties of Mesostructures Made of
Magnetic Nanocrystals
8.4 Conclusion
References
9 Synthesis and Applications of Highly Ordered Anodic
Porous Alumina
Hideki Masuda and Kazuyuki Nishio
9.1 Introduction
9.2 Synthesis of Highly Ordered Anodic Porous Alumina
9.2.1 Growth of Anodic Porous Alumina on A1
9.2.2 Synthesis of Highly Ordered Anodic Porous Alumina
9.2.3 Ideally Ordered Anodic Porous Alumina by the Pretexturing Process Using Molds
9.3 Ordered Nanostructures Based on Highly Ordered Anodic Porous Alumina
9.3.1 Nanocomposite Structures Using Highly Ordered Anodic Porous Alumina
9.3.2 Nanofabrication Using Anodic Porous Alumina Masks
9.3.3 Two-Step Replication Process for Functional Nanohole Arrays
9.3.4 Ordered Array of Biomolecules Using Highly Ordered Anodic Porous Alumina
9.4 Conclusions
References
Index

相關詞條

熱門詞條

聯絡我們