自然語言處理與套用

《自然語言處理與套用》是2023年9月1日清華大學出版社出版的圖書,作者:張華平、商建雲、湯澤陽、雷沛鈳。

基本介紹

  • 中文名:自然語言處理與套用
  • 作者:張華平、商建雲、湯澤陽、雷沛鈳
  • 出版時間:2023年9月1日
  • 出版社:清華大學出版社
  • ISBN:9787302646266
  • 定價:89 元
  • 印次:1-1
  • 印刷日期:2023.09.22
內容簡介,圖書目錄,

內容簡介

本書集學術前沿、教學成果與套用實踐於一體,系統講述自然語言處理理論與套用。全書分為5篇。基礎理論篇包括第1~4章,主要內容為自然語言處理與套用概述、面向自然語言處理的深度學習經典平台與算法、面向自然語言處理的深度學習前沿進展、預訓練語言模型;信息處理篇包括第5~9章,主要內容為網路爬蟲技術、多格式文檔解析與管理、語音文字識別、圖像語義表示與字元識別、中文分詞與詞性標註;語義分析篇包括第10~13章,主要內容為情感分析、新詞發現、命名實體識別與關鍵字提取、知識圖譜的大數據自動構建與套用;文本挖掘篇包括第14~18章,主要內容為信息過濾、文本分類、文本聚類、文本校對、自動摘要;套用篇包括第19、20章,主要內容為自然語言處理套用項目和案例。
本書可作為高等學校自然語言處理方向研究生與高年級本科生的專業課教材,也可供自然語言處理方向的科研人員、工程技術人員和愛好者參考。

圖書目錄

目錄
第1篇基礎理論篇
第1章自然語言處理與套用概述3
1.1自然語言處理3
1.1.1自然語言處理的定義、難點及其發展歷程3
1.1.2自然語言處理的上下游任務4
1.2中文自然語言處理髮展現狀7
1.2.1自然語言處理任務評測結果7
1.2.2中文數據集與評測現狀8
1.2.3中文預訓練語言模型現狀9
1.2.4中國影響力現狀9
1.3自然語言處理的發展趨勢11
1.3.1處理從人工到自動化11
1.3.2套用從通用到場景化13
1.3.3算法從單一到平台化15
1.4中文網際網路自然語言處理面臨的挑戰16
1.4.1信息對抗16
1.4.2多語言互動16
1.4.3社會演化17
第2章面向自然語言處理的深度學習經典平台與算法18
2.1深度學習經典平台18
2.1.1TensorFlow18
2.1.2PyTorch20
2.1.3PaddlePaddle21
2.2深度學習經典算法22
2.2.1卷積神經網路222.2.2循環神經網路23
2.2.3生成對抗網路26
第3章面向自然語言處理的深度學習前沿進展30
3.1傳統深度學習遇到的瓶頸30
3.1.1深度學習概述30
3.1.2傳統深度學習遇到的問題31
3.2面向數據的深度學習前沿進展33
3.2.1主動學習33
3.2.2自監督學習35
3.2.3提示學習37
3.2.4圖神經網路39
3.2.5多模態學習41
3.3面向訓練的深度學習前沿進展43
3.3.1多任務學習43
3.3.2終身學習45
3.3.3範式遷移46
3.4面向套用的深度學習前沿進展47
3.4.1模型壓縮47
3.4.2可解釋學習48
3.4.3對抗與算法安全49
〖1〗〖2〗自然語言處理與套用目錄第4章預訓練語言模型51
4.1預訓練語言模型概述51
4.1.1預訓練語言模型定義51
4.1.2預訓練語言模型的發展歷程51
4.2常見預訓練語言模型介紹52
4.2.1BERT52
4.2.2GPT354
4.2.3ELMo54
4.2.4ERNIE55
4.3預訓練語言模型的使用56
4.3.1遷移學習56
4.3.2微調56
4.4預訓練語言模型發展趨勢58
4.4.1多語種58
4.4.2多模態58
4.4.3增大模型58
4.4.4替換預訓練任務59
4.4.5結合外部知識60
4.4.6預訓練語言模型壓縮61
4.5套用與分析61
4.5.1模型介紹61
4.5.2模型使用62
第2篇信息處理篇
第5章網路爬蟲技術65
5.1概述65
5.1.1網路爬蟲的概念內涵65
5.1.2網路爬蟲的技術發展65
5.1.3網路爬蟲的爬取過程66
5.2網路爬蟲分類67
5.2.1通用網路爬蟲67
5.2.2深層網路爬蟲68
5.2.3聚焦網路爬蟲68
5.2.4增量式網路爬蟲70
5.3網路爬蟲庫與框架71
5.3.1網路爬蟲庫71
5.3.2網路爬蟲框架72
5.4網路爬蟲技術前沿75
5.4.1網路爬蟲技術的最新進展75
5.4.2反爬的前沿技術75
5.5套用與分析76
第6章多格式文檔解析與管理80
6.1概述80
6.1.1文檔格式80
6.1.2文檔標準的發展歷程80
6.2多格式文檔解析81
6.2.1Word文檔解析81
6.2.2PDF文檔解析83
6.3多格式文檔管理85
6.3.1線上文檔管理85
6.3.2區塊鏈文檔管理87
6.4套用與分析88
6.4.1多格式文檔讀取算法88
6.4.2多格式文檔解析實例90
第7章語音文字識別95
7.1概述95
7.1.1發展歷程95
7.1.2基本原理96
7.2經典算法98
7.2.1經典語言模型98
7.2.2經典聲學模型99
7.3最新進展103
7.3.1DFCNN模型104
7.3.2混合網路Conformer105
7.4套用與分析106
第8章圖像語義表示與字元識別108
8.1圖像字幕108
8.1.1問題背景108
8.1.2技術分析108
8.1.3建模方法112
8.1.4套用與分析114
8.2OCR及領域最佳化115
8.2.1問題背景115
8.2.2技術分析116
8.2.3套用與分析120
第9章中文分詞與詞性標註123
9.1中文分詞概述123
9.2中文分詞的困難124
9.3基於機械匹配的中文分詞算法127
9.3.1詞典匹配法127
9.3.2N最短路徑法130
9.4基於統計語言模型的中文分詞算法132
9.4.1N元語言模型132
9.4.2互信息模型133
9.4.3最大熵模型134
9.5NLPIRICTCLAS: 基於層次隱馬爾可夫模型的中文分詞算法135
9.5.1層次隱馬爾可夫模型136
9.5.2基於類的隱馬爾可夫分詞算法138
9.5.3N最短路徑的切分排歧策略139
9.6基於雙向循環神經網路與條件隨機場的詞法分析140
9.6.1概述140
9.6.2基於雙向循環神經網路的序列標註140
9.6.3融合條件隨機場的深度神經網路模型141
9.7套用與分析142
9.7.1NLPIRICTCLAS套用演示142
9.7.2LTP143
9.7.3結巴分詞143
9.7.4PKUSeg143
第3篇語義分析篇
第10章情感分析147
10.1情感分析概述147
10.1.1研究任務148
10.1.2研究熱點148
10.2經典方法149
10.2.1基於情感詞典的情感分析方法149
10.2.2基於機器學習的情感分析方法150
10.2.3基於深度學習的情感分析方法152
10.2.4先進模型153
10.3套用與分析153
第11章新詞發現158
11.1新詞發現概述158
11.2多語種新詞發現前沿綜述159
11.3基於規則的新詞發現方法161
11.3.1規則抽取方法161
11.3.2規則過濾方法162
11.4基於統計模型的新詞發現方法162
11.4.1凝固度163
11.4.2信息熵163
11.4.3新詞IDF163
11.5基於深度學習的新詞發現方法164
11.6套用與分析165
11.6.1面向社會媒體的開放領域新詞發現165
11.6.2多語種新詞發現示例171
第12章命名實體識別與關鍵字提取173
12.1命名實體識別與關鍵字提取概述173
12.1.1命名實體識別173
12.1.2關鍵字提取177
12.2經典算法177
12.2.1命名實體識別經典算法177
12.2.2關鍵字提取經典算法185
12.2.3算法分類189
12.3套用與分析191
12.3.1命名實體識別示例191
12.3.2關鍵字提取實驗194
第13章知識圖譜的大數據自動構建與套用198
13.1知識圖譜概述198
13.2知識圖譜的數據來源200
13.2.1大規模知識庫200
13.2.2網際網路連結數據200
13.2.3多數據源的知識融合202
13.3知識圖譜的構建203
13.3.1概念發現206
13.3.2關聯計算207
13.3.3關係抽取208
13.4套用與分析211
13.4.1智慧型搜尋211
13.4.2機器人學習機212
13.4.3文檔表示212
第4篇文本挖掘篇
第14章信息過濾215
14.1信息過濾概述215
14.1.1信息過濾推薦最新進展217
14.1.2重點關注信息過濾最新進展219
14.2信息過濾推薦經典算法219
14.2.1內容過濾219
14.2.2協同過濾220
14.2.3混合過濾221
14.3重點關注信息過濾經典算法222
14.3.1黑白名單過濾222
14.3.2基於內容的文本過濾222
14.3.3基於內容的圖片過濾225
14.4套用與分析228
14.4.1信息過濾推薦示例228
14.4.2垃圾信息過濾示例229
14.4.3智慧型過濾系統展示232
第15章文本分類234
15.1文本分類概述234
15.1.1基於統計規則的文本分類234
15.1.2基於機器學習的文本分類234
15.1.3基於深度學習的文本分類235
15.2文本分類算法237
15.2.1稠密連線網路237
15.2.2圖神經網路239
15.2.3注意力模型242
15.3套用與分析245
15.3.1數據集245
15.3.2實驗245
第16章文本聚類246
16.1文本聚類概述246
16.2文本聚類算法體系246
16.3半監督文本聚類248
16.4基於關鍵特徵聚類的Top N熱點話題檢測方法研究250
16.4.1研究概述250
16.4.2基於文檔關鍵特徵的話題聚類251
16.4.3實驗結果展示254
第17章文本校對256
17.1文本校對概述256
17.2文本校對算法257
17.2.1基於統計機器學習的文本校對方法258
17.2.2基於深度學習的文本校對方法258
17.2.3基於預訓練語言模型的文本校對方法259
17.3KDN: 基於知識驅動的多類型文本校對融合算法264
17.3.1語法校對264
17.3.2語病校對265
17.3.3基於音形碼的相似度計算266
17.3.4校對融合算法266
17.4NLPIR文本自動校對系統設計與套用267
17.4.1自動校對模組267
17.4.2前後端設計與實現267
17.4.3線上校對外掛程式office268
17.4.4線上校對功能示例269
第18章自動摘要270
18.1自動摘要概述270
18.1.1基於抽取的自動文摘272
18.1.2基於理解的自動文摘274
18.2基於關鍵字提取的自動摘要274
18.2.1文本預處理274
18.2.2停用詞表275
18.2.3雙數組Trie樹276
18.2.4關鍵字提取277
18.2.5句子切分279
18.2.6句子相似度計算280
18.3面向主題的自動摘要280
18.3.1改進的最大邊緣相關度方法281
18.3.2面向主題的詞特徵統計282
18.3.3領域主題詞表282
18.3.4句子間的包含關係283
18.4基於主題模型與信息熵的中文文檔自動摘要技術研究284
18.4.1主題模型285
18.4.2信息熵286
18.4.3句子信息熵的計算方法286
18.4.4算法介紹287
18.4.5自動摘要套用示例288
第5篇套用篇
第19章自然語言處理套用項目293
19.1裁判文書閱讀理解293
19.1.1背景介紹293
19.1.2數據集簡介293
19.1.3評價標準293
19.1.4實驗過程及分析294
19.2PDF敏感信息發現與隱私保護295
19.2.1背景介紹295
19.2.2數據處理296
19.2.3個人信息識別297
19.2.4脫敏技術298
19.2.5結果展示300
19.3微博博主的特徵與行為大數據挖掘301
19.3.1背景介紹301
19.3.2巨觀特徵大數據挖掘302
19.3.3實驗與分析307
19.3.4微博博主的價值觀自動評估方法307
19.4用於中文影視劇台詞的語義消歧系統309
19.4.1背景介紹309
19.4.2語義消歧知識圖譜的構建310
19.4.3基於知識圖譜和語義特徵的語義消歧算法312
19.4.4實驗結果與分析314
19.4.5語義消歧系統315
19.5大數據考研分析316
19.5.1背景介紹316
19.5.2模組設計317
19.5.3結果及分析318
19.6客服通話文本摘要提取319
19.6.1背景介紹319
19.6.2數據說明320
19.6.3評價指標320
19.6.4實驗方法320
第20章自然語言處理套用案例322
20.1《紅樓夢》前80回和後40回作者同一性分析322
20.1.1背景介紹322
20.1.2輸入數據322
20.1.3分析工具和方法322
20.1.4結果及分析323
20.2丁真走紅事件網路輿情分析327
20.2.1背景介紹327
20.2.2系統結構及方法327
20.3個人語言特徵消除工具330
20.3.1背景介紹330
20.3.2技術概念330
20.3.3系統設計331
20.3.4總結分析332
20.4問藥小助手333
20.4.1套用概述333
20.4.2數據來源333
20.4.3數據標註333
20.4.4症狀識別334
20.4.5醫療槽填充335
20.5自動寫詩與古詩詞鑑賞翻譯系統336
20.5.1自動寫詩336
20.5.2古詩詞鑑賞與翻譯337

相關詞條

熱門詞條

聯絡我們