人物經歷
教育經歷
2002年進入中山大學物理學系學習;2006年獲得中山大學理學學士學位,同年保送中山大學直接攻讀博士; 2011年獲得中山大學工學博士學位,研究生期間主要針對光電功能材料的光電回響、物理力學、相變與電子輸運等問題進行研究。
工作經歷
2011年以研究員身份在新加坡科技研究局(A*STAR)高性能計算研究所(IHPC)進行熱電材料應變調控研究;2013年受聘新加坡國立大學石墨烯中心資深研究員從事新型二維光電功能材料聲子振動拉曼光譜、二維半導體金屬界面接觸以及其在器件中的套用研究;2017年受聘香港理工大學套用物理系擔任研究助理教授,獨立PI、並獲得博士生導師資格,2018年受聘中山大學“百人計畫”中青年傑出人才任教授、博士生導師。
學科方向
所在學科:凝聚態物理學
研究方向:
1. 二維鐵電/鐵磁/多鐵功能材料性能與套用研究;
2. 應變調控二維材料光電功能性質以及相關機理研究;
3. 二維材料在能源領域如電池、催化等方面的套用研究;
4. 密度泛函理論第一性原理計算界面物理、分子動力學模擬反應機理。
榮譽獲獎
1.2018年入選中山大學“百人計畫”中青年傑出人才
2.2008年入選中國優秀博士生代表團前往德國林島參加 58 屆物理諾貝爾獎得主大會
學術成果
承擔課題
國家自然科學基金青年項目
代表論著
近年來的研究工作主要涉及微納米複合材料、物理力學、表面與界面、聲子物理等相關學科的交叉領域,結合理論建模、第一性原理計算和實驗方法在低維功能結構的本徵振動特性,力學回響以及力學載入作為一種調控手段對材料器件性能的最佳化等方面,取得了一系列研究成果,受到國內外的同行、研究機構和新聞媒體的廣泛關注。目前以一作或通訊作者在高影響力的國際期刊上發表SCI學術論文多篇,如Nature Chemistry,Physical Review B, Nature Communications, ACS Nano, Advanced Functional Materials, Nano Letters, JACS, JMCA等,論文SCI總他引2000餘次,單篇最高他引400次。發表於Nano Letters的一篇關於低維材料層間聲子振動的論文被Web of Science選為引用率在本領域1%的高被引論文,發表在Nature Chemistry的有機二維材料的論文被Web of Science選為本領域引用前0.1%的熱點論文與高被引論文,並被國際著名學術期刊Nature作為亮點工作重點報導。2018年受邀請為Springer出版社的專著撰寫章節介紹在低維結構聲子振動方面所做的研究工作。
學術論文
[1]. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit, Nature Communications, 2019, 10. 1775.
[2]. Predicting two-dimensional pentagonal transition metal monophosphides for efficient electrocatalytic nitrogen reduction reaction, J. Mater. Chem. A, 2019, 7, 11444-11451.
[3]. Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution Catalysis, J. Am. Chem. Soc. 2019, 141, 8136-8145.
[4]. Two-Dimensional Polymer Synthesized via Solid-State Polymerization for High-Performance Supercapacitors, ACS Nano, 2018, 12, 852-860.
[5]. Photoluminescence upconversion by defects in Hexagonal Boron Nitride, Nano Lett. 2018, 18, 6898-6905.
[6]. Pressure-Induced topological nontrivial phase and tunable optical properties in all-inorganic Halide perovskites, J. Phys. Chem. C, 2018, 122, 17718-17725.
[7]. Temperature- and Phase-Dependent Phonon Renormalization in 1T′-MoS2, ACS Nano, 2018, 12, 5051-5058.
[8]. 2D WC/WO3 heterogeneous hybrid photocatalytic decomposition of organic compounds with Vis-NIR light. Advanced functional materials, 2018, 28, 1705357.
[9]. Fabrication and Properties of a Free-Standing Two-Dimensional Titania. J. Am. Chem. Soc. 2017, 139, 15414-15419.
[10]. A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nature Chemistry, 2017, 9, 563-570.
[11]. Tunable inverted gap in monolayer quasi-metallic MoS 2 induced by strong charge-lattice coupling. Nature Communications, 2017, 8, 486.
[12]. Van der Waals Bonded Co/h-BN Contacts to Ultrathin Black Phosphorus Devices. Nano Letters, 2017, 17, 5361-5367.
[13]. Determination of Crystal Axes in Semimetallic T′-MoTe2 by Polarized Raman Spectroscopy. Advanced functional Materials. 2017, 27, 1604799.
[14]. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Research, 2016, 9, 3559.
[15]. Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials – A general bond polarizability model. Scientific Reports, 2015, 5, 14565.
[16]. Rapid and Nondestructive Identifi cation of Polytypism and Stacking Sequences in Few-Layer Molybdenum Diselenide by Raman Spectroscopy. Advanced Materials, 2015, 27, 4502.
[17]. Large Frequency Change with Thickness in Interlayer Breathing Mode - Significant Interlayer Interactions in Few Layer Black Phosphorus. Nano Letters, 2015, 15, 3931.
[18]. Tuning the Threshold Voltage of MoS2 Field-Effect Transistors via Surface Treatment. Nanoscale, 2015, 7, 10823.
[19]. Evolution of Raman Scattering and Electronic Structure of Ultrathin Molybdenum Disulfide by Oxygen Chemisorption. Advanced Electronic Materials, 2015, 1, 1400037.
[20]. Low Resistance Metal Contacts to MoS2 Device with Nickel-Etched –Graphene Electrodes. ACS Nano, 2015, 9, 869.
[21]. Interlayer vibrational modes in few-quintuple-layer Bi2Te3 and Bi2Se3 two-dimensional crystals: Raman spectroscopy and first-principles studies. Physical Review B, 2014, 90, 245428.
[22]. Theoretical study of the thermoelectric properties of few-layer MoS2 and WSe2. Phys. Chem. Chem. Phys, 2014, 16, 10866.
[23]. Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2. Physical Review B, 2013, 88, 195313.
[24]. Anomalous frequency trends in MoS2 thin films attributed to surface effects. Physical Review B, 2013, 88, 075320.
[25]. Interlayer Breathing and Shear Modes in Few-Trilayer MoS2 and WSe2. Nano Letters, 2013, 13, 1007−1015.
[26]. Nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures. Physical Review X, 2013, 3, 041027.
[27]. First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi2Se3 and Bi2Te3 including van der Waals interactions. Physical Review B, 2012, 86, 184111.
[28]. First-principles calculations of size-dependent giant electroresistance effect in nanoscale asymmetric ferroelectric tunnel junctions. Journal of Applied Physics. 2012, 111, 074102.
[29]. Tunable tunneling electro-resistance in ferroelectric tunnel junctions by mechanical loads. ACS Nano, 2011, 5, 1649.
[30]. Impact of applied strain on the electron transport through ferroelectric tunnel junctions. Applied Physics Letters, 2010, 97, 012905.
[31]. First-principles study on energetics of intrinsic point defects in LaAlO3. Physical Review B, 2009, 80, 104115.
[32]. Microscopic mechanism of leakage currents in silica junctions. Journal of Applied Physics, 2009, 106, 073711.
[33]. First-principles study of the electronic and optical properties in the rhombohedral LaAlO3, Journal of Applied Physics, 2008, 104, 053503.
[34]. Structural and elastic properties of LaAlO3 from first-principles calculations. Journal of Applied Physics, 2008, 104, 073518.