紅移現象,最初是針對機械波而言的,即一個相對於觀察者運動著的物體離得越遠發出的聲音越渾厚(波長比較長),相反離得越近發出的聲音越尖細(波長比較短)。
基本介紹
- 中文名:紅移現象
- 外文名:red shift
- 領域:天文學
- 國家:美國
定義,分類,紅移現象詳解,意義,
定義
紅移(red shift)
後來,美國天文學家哈勃把一個天體的光譜向長波(紅)端的位移叫做都卜勒紅移。通常認為它是都卜勒效應所致,即當一個波源(光波或射電波)和一個觀測者互相快速運動時所造成的波長變化。美國天文學家哈勃於1929年確認,遙遠的星系均遠離我們地球所在的銀河系而去,同時,它們的紅移隨著它們的距離增大而成正比地增加。這一普遍規律稱為哈勃定律,它成為星系退行速度及其和地球的距離之間的相關的基礎。這就是說,一個天體發射的光所顯示的紅移越大,該天體的距離越遠,它的退行速度也越大。
分類
紅移有3種:都卜勒紅移(由於輻射源在固定的空間中遠離我們所造成的)、引力紅移(由於光子擺脫引力場向外輻射所造成的)和宇宙學紅移(由於宇宙空間自身的膨脹所造成的)。對於不同的研究對象,牽涉到不同的紅移,具體的見下表:
通常引力紅移都比較小,只有在中子星或者黑洞周圍這一效應才會比較大。對於遙遠的星系來說,宇宙學紅移是很容易區別的,但是在星系隨著空間膨脹遠離我們的時候,由於其自身的運動,在宇宙學紅移中也會摻雜進都卜勒紅移。
一般說來,為了從其他紅移中區別引力紅移,你可以將這個天體的大小與這個天體質量相同的黑洞的大小進行比較。類似星雲和星系這樣的天體,它們的半徑是相同質量黑洞半徑的千億倍,因此其紅移的量級也大約是靜止頻率的千億分之一。對於普通的恆星而言,它們的半徑是同質量黑洞半徑的十萬倍左右,這已經接近目前光譜觀測解析度的極限了。中子星和白矮星的半徑大約是同質量黑洞半徑的10和3000倍,其引力紅移的量級可以達到靜止波長的1/10和1/1000。
宇宙學紅移在100個百萬秒差距的尺度上是非常明顯的。但是對於比較近的星系,由於星系本身在星系團中的運動所造成的都卜勒紅移和宇宙學紅移的量級差不多,你必須仔細的區別開這兩者。通常星系在星系團中的速度為3000m/s,這大約與在50個百萬秒差距處的星系的退行速度相當。
紅移現象詳解
一個運動物體發出的聲波的波長(聲調)也有與此完全相似的變化。朝向你運動的物體發出的聲波被壓縮,因而聲調較高;離你而去的物體的聲波被拉伸,因而聲調較低。任何遇到過急救車或其他警車警笛長鳴擦身而過的人對以上兩種情況都不會陌生。聲波和電磁輻射的上述現象都叫做都卜勒效應。
都卜勒效應引起的紅移和藍移的測量使天文學家得以計算出恆星的空間運動有多快,而且還能夠測定,比如說,星系的自轉方式。天體紅移的量度是用紅移引起的相對變化表示,稱為z。如果z=0.1,則表示波長增加了10%,等等。只要所涉及的速率遠低於光速,z也將等於運動天體的速率除以光速。所以,0.1的紅移意味著恆星以1/10的光速遠離我們而去。
1914年,工作在洛韋爾天文台的維斯托·斯里弗發現,15個稱為旋渦星雲(現在叫做星系)的天體中有11個的光都顯示紅移。1922年,威爾遜山天文台的埃德溫·哈勃和米爾頓·哈馬遜進行了更多的類似觀測。哈勃首先確定了星雲是和銀河系一樣的另外的星系。然後,他們發現大量星系的光都有紅移。到了1929年,哈勃主要通過將紅移和視亮度的比較,確立了星系的紅移與它們到我們的距離成正比的關係(現在稱為哈勃定律)。這個定律僅對很少幾個在空間上離銀河系最近的星系不成立,例如仙女座星系的光譜顯示的是藍移。
起初,遙遠星系的紅移被解釋成星系在空間運動的都卜勒效應,似乎它們全都是由於以銀河系為中心的一次爆炸而四散飛開。但很快就意識到,這種膨脹早已隱含在發現哈勃定律之前十幾年發表的廣義相對論方程式之中。當阿爾伯特·愛因斯坦本人1917年首次套用那些方程式導出關於宇宙的描述(宇宙模型)時,它發現方程式要求宇宙必須處於運動狀態——要么膨脹,要么收縮。方程式排除了穩定模型存在的可能性。由於當時無人知曉宇宙是膨脹的,於是愛因斯坦在方程式中引入一個虛假的因子,以保持模型靜止;他後來說這是他一生‘最大的失誤’。
去掉那個虛假因子後,愛因斯坦方程式能準確描述哈勃觀測到的現象。方程式表明,宇宙應該膨脹,這並不是因為星系在空間運動,而是星系之間的虛無空間(嚴格說是時空)在膨脹。這種宇宙學紅移的產生,是因為遙遠星系的光在其傳播途中被膨脹的空間拉開了,而且拉開的程度與空間膨脹的程度一樣。
由於紅移正比於距離,這就給宇宙學家提供了一個測量宇宙的衡量標準。量竿必須通過測量較近星系來校準,雖然這種校準還有一些不確定性(見宇宙距離尺度),但它仍然是宇宙學唯一最重要的發現。沒有測量距離的方法,宇宙學家就不可能真正開始認識宇宙的本質,而哈勃定律的準確性表明,廣義相對論是關於宇宙如何運轉的極佳描述。
由於歷史原因,星系的紅移仍然用速度來表示,儘管天文學家知道紅移並非由通過空間的運動所引起。一個星系的距離等於它的紅移‘速度’除以一個常數,這個常數叫做哈勃常數,它的數值大約是60公里每秒每百萬秒差距,這意味著星系和我們之間距離的每一個百萬秒差距將引起60公里每秒的紅移速度。對我們的最近鄰居來說,宇宙學紅移是很小的,而像仙女座星系那樣的星系顯示的藍移確實是它們的空間運動造成的都卜勒效應藍移。遙遠星系團(猶如一群蜜蜂)中的星系顯示圍繞某個中間值的紅移擴散度;這箇中間值就是該星系團的宇宙學紅移,而對於中間值的偏差則是星系在星系團內部的運動引起的都卜勒效應。
哈勃定律是唯一的紅移/距離定律(穩定宇宙除外),不論從宇宙中的哪個星系來觀測,這個定律‘看起來都是一樣’的。每個星系(非常近的鄰居除外)退離另一個星系的運動都遵循這條定律,膨脹是沒有‘中心’的。這種情形通常比作畫在氣球表面的斑點,當氣球吹脹時,斑點彼此分開更遠,這是因為氣球壁膨脹了,而不是因為斑點在氣球表面上移動了。從任意一個斑點進行的測量將證明,所有其他斑點的退行是均勻的,完全遵守哈勃定律。
當紅移大到相當於大約1/3以上光速時,紅移的計算就必須考慮狹義相對論的要求。所以紅移等於2並不表示天體的宇宙學‘速度’是光速的兩倍。事實上,z=2對應的宇宙學速度等於光速的80%。已知最遙遠類星體的紅移稍稍大於4,對應的‘速度’剛剛超過光速的90%;星系紅移的最高記錄屬於一個叫做8C1435+63的天體,其紅移值等於4.25。宇宙微波背景輻射的紅移是1,000。
第三類紅移是由引力引起的,而且也是愛因斯坦的廣義相對論所闡明的。從一顆恆星向外運動的光是在恆星的引力場中做‘登山’運動,因而它將損失能量。當一個物體,比如火箭,在引力場中向上運動時,它損失能量並減速(這就是為什麼火箭發動機必須點火才能將它推人軌道的原因)。但光不可能減速;光永遠以比300,000公里每秒小一點點的同一速率c傳播。既然光損失能量時不減速,那就只有增加波長,也就是紅移。
原理上,逃離太陽的光,甚至地球上的火把向上發出的光,都有這種引力紅移。但是,只有在如白矮星表面那樣的強引力場中,引力紅移才大到可測的程度。黑洞可以看成是引力場強大到使試圖逃離它的光產生無窮大紅移的物體。
式中c為光速,z=3.5時,v可達到0.9c。(這裡是不是有問題,z要達到多少才能超光速?)
紅移是河外天體共有的特徵。因此,絕大多數天文學家認為,類星體是河外星體。紅移-視星等關係的統計的結果表明:哈勃定律對於河外星系是適用的。就是說,它們的紅移是宇宙學紅移,它們的距離是宇宙學距離,它們的紅移和視星等是統計相關的。可是,對類星體來說,紅移和視星等的統計相關性很差,這就產生了兩個彼此相關的問題:類星體的紅移是否就是宇宙學紅移,類星體的距離是否就是宇宙學的距離。大多數天文學家認為,類星體的紅移是宇宙學紅移。因此,紅移反映了類星體的退行,而且符合哈勃定律。按照這種看法,作為一種天體類型而言,類星體是人類迄今為止觀測到的最遙遠的天體。持這種觀點的人認為,類星體紅移-視星等的統計相關性很差的原因,在於類星體的絕對星等彌散太大。如果按照一定的標準將類星體分類,對某種類型的類星體進行紅移-視星等統計,則相關性便會顯著提高。支持宇宙學紅移的觀測事實還有:已發現三個類星體分別位於三個星系團里,而這些類星體的紅移和星系團的紅移差不多;類星體與某些激擾星系(如塞佛特星系)很類似;蝎虎座BL型天體是一種在形態上類似恆星的天體,以前認為它們是銀河系內的變星,現已確定,它們是遙遠的河外天體。
意義
紅移定律已為後來的研究證實,並為認為宇宙膨脹的現代相對論宇宙學理論提供了基石。上個世紀60年代初以來,天文學家發現了類星體,它們的紅移比以前觀測到的最遙遠的星系的紅移都更大。各種各樣的類星體的極大的紅移使我們認為,它們均以極大的速度(即接近光速的90%)遠離地球而去;還使我們構想,它們是宇宙中距離最遙遠的天體。
換句話說,由於都卜勒紅移現象的存在,從這個意義上來講,宇宙不是無限的,而是有界的,即天體紅移的速度等於光速的地帶就是宇宙的邊緣和界限了,超過了這個界限,也就超過了光速,光線也就因此永遠無法達到我們的視界,那就不是我們這個世界了,到底是怎樣只有上帝才知道。
現在,根據科學測定,宇宙的年齡大約是150億年,這個既是它的年齡(時間),其實也是它的空間長度,即150億光年是我們觀察太空理論上能達到的最遠距離了,我們現在看到的距離地球150億光年的地方恰恰就是宇宙誕生時的鏡像。150億年前,在大爆炸的起點,時間和空間獲得的最完美的統一,那一點(或那一刻)即是我們整個宇宙的開端。