程光輝:男,電子科技大學教授 ,研究方向: 矩陣計算、盲信號分離.
教育背景
論文專著
[1]Guang-Hui Cheng, Shan-Man Li, Eric Moreau, New Jacobi-like algorithms for non-orthogonal joint diagonalization of Hermitian matrices, Signal Processing, 2016, 128: 440-448. [2]Guang-Hui Cheng, Xi Rao, Xiao-Guang Lv, The comparisons of two special Hermitian and skew-Hermitian splitting methods for image restoration, Applied Mathematical Modelling, 2015, 39: 1275-1280 [3]Guang-Hui Cheng, Qin Tan, Zhuan-De Wang, A note on eigenvalues of perturbed 2-by-2 block Hermitian matrices, Linear and multilinear algebra, 2015, 63(4): 820-825. [4]Guanghui Cheng, Zhida Song, Jianfeng Yang, Jia Si, The bounds of the eigenvalues for rank-one modification of the Hermitian matrix, Numerical linear algebra with applications, 2014, 21: 98-107. [5]Guang-Hui Cheng, New bounds for eigenvalues of Hadamard product and Fan product of matrices, TaiwaneseJournalof Mathematics, 2014, 18(1): 305-312. [6]Guanghui Cheng, Note on some upper bounds for the condition number, Journal of Mathematical inequalities, 2014, 8(2): 371–376. [7]Cheng Guang-Hui, A convergence analysis of the ARD algorithm,自動化學報,2014, 40(5): 980-982. [8]程光輝,王磊傑,直接盲分離聯合對角化算法,電子科技大學學報,2014, 43(3): 358-362. [9]Guanghui Cheng, Xi Rao, Some upper bounds for the spectral radius of the Hadamard product of two nonnegative matrices, Journal of Mathematical inequalities, 2013, 7(3): 529-534. [10]Guanghui cheng, Tingzhu Huang, Yanfei Jing, Xi Rao, Block ILU preconditioners for block-tridiagonal systems, Journal of Japan industrial and applied Mathematics, 2013, 30: 453-464. [11]Guanghui Cheng, Zhuande Wang, Qin Tan, Some inequalities for the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse, Journal of Inequalities and Applications, 2013, 65: 1-9. [12]Guanghui Cheng, Xiaoxue Luo, Liang Li, The bounds of the smallest and largest eigenvalues for rank-one modification of the Hermitian eigenvalue problem, Applied Mathematics Letters, 2012, 25(9): 1191-1196. [13]He Jun, Huang Ting-Zhu, Cheng Guang-Hui, A modified generalization of the Hermitian and skew-Hermitian splitting iteration, Bulletin Mathematique De La Societe Des Sciences Mathematiques De Roumanie, 2012, 55(2): 147-155. [14]Guangui Cheng, Tingzhu Huang, Yanfei Jing, Convergence behaviors of multisplitting methods with K+1 relaxed parameters, Journalof Computational and Applied Mathematics, 2009, 229: 61-69. [15]Guanghui Cheng, Tingzhu Huang, Shuqian Shen, Block triangular preconditioners for the discretized time-harmonic Maxwell equations in mixed form, Computer Physics Communications, 2009, 180: 192-196. [16]TingZhu Huang, Guanghui Cheng,New block triangular preconditioners for saddle point linear systems with highly singular (1,1) blocks, Mathematical Problems in Engineering, 2009, Article ID 468965, 1-12. |
研究項目
一,微積分、線性代數與空間解析幾何、數學實驗、矩陣理論 |