示性類(書籍)

示性類(書籍)

本詞條是多義詞,共2個義項
更多義項 ▼ 收起列表 ▲

《示性類》又名《Characteristic Classes》是2008年世界圖書出版公司出版的圖書,作者是米爾納。

基本介紹

  • 書名:示性類
  • 又名:Characteristic Classes
  • 作者:米爾納
  • ISBN:9787510005336, 7510005337
  • 頁數:330
  • 出版社:世界圖書出版公司
  • 出版時間:2009年8月1日
  • 開本:32
內容簡介,目錄,

內容簡介

《示性類》內容簡介:The text which follows is based mostly on lectures at PrincetonUniversity in 1957. The senior author wishes to apologize for the delayin publication.The theory of characteristic classes began in the year 1935 with almostsimultaneous work by HASSLER WHITNEY in the United States andEDUARD STIEFEL in Switzerland. StiefeI's thesis, written under thedirection of Heinz Hopf, introduced and studied certain "characteristic"homology classes determined by the tangent bundle of a smooth manifold.Whitney, then at Harvard University, treated the case of an arbitrary spherebundle. Somewhat later he invented the language of cohomology theory,hence the concept of a characteristic cohomology class, and proved thebasic product theorem.

目錄

Preface
§1. Smooth Manifolds
§2. Vector Bundles
§3. Constructing New Vector Bundles Out of Old
§4. Stiefel-Whitney Classes
§5. Grassmann Manifolds and Universal Bundles
§6. A Cell Structure for Grassmann Manifolds
§7. The Cohomology Ring H*(Gn; Z/2)
§8. Existence of Stiefel-Whitney Classes
§9. Oriented Bundles and the Euler Class
§10. The Thorn Isomorphism Theorem
§11. Computations in a Smooth Manifold
§12. Obstructions
§13. Complex Vector Bundles and Complex Manifolds
§14. Chern Classes
§15. Pontrjagin Classes
§16. Chern Numbers and Pontrjagin Numbers
§17. The Oriented Cobordism Ring Ω*
§18. Thorn Spaces and Transversality
§19. Multiplicative Sequences and the Signature Theorem
§20. Combinatorial Pontrjagin Classes
Epilogue
Appendix A: Singular Homology and Cohomology
Appendix B: Bernoulli Numbers
Appendix C: Connections, Curvature, and Characteristic Classes.
Bibliography
Index

相關詞條

熱門詞條

聯絡我們