內容簡介
本書是數值計算領域的名著,系統介紹了矩陣計算的基本理論和方法。內容包括:矩陣乘法、矩陣淚促仔趨分析、
線性方程組、正交化和最小二乘法、特徵值問題、Lanczos方法、矩陣函式及鞏旬厚專題討論等。書中的許多算法都有現成的軟體包實現,每節後還附有習題,並有注釋和大量參考文獻。
本書可作為高等催備企少學校數學系高年級本科生和研究生的教材,煮戒察亦可作為計算數學己遷汽良辯寒和工程技術人員的參煉全考用書。
圖書目錄
1Matrix Multiplication Problems1
1.1Basic Algorithms and Notation2
1.2Exploiting Structure 16
1.3Block Matrices and Algorithms24
1.4Vectorization and Re-Use Issues34
2Matrix Analysis48
2.1Basic Ideas from Linear Algebra48
2.2Vector Norms 52
2.3Matrix Norms 54
2.4Finite Precision Matrix Computations59
2.5Orthogonality and the SVD69
2.6Projections and the CS Decomposition75
2.7The Sensitivity of Square Linear Systems80
3General Linear Systems87
3.1Triangular Systems88
3.2The LU Factorization94
3.3Roundoff Analysis of Gaussian Elimination104
3.4Pivoting109
3.5Improving and Estimating Accuracy123
4Special Linear Systems
4.1The LDMT and LDLT Factorizations135
4.2Positive Definite Systems140
4.3Banded Systems152
4.4Symmetric Indefinite Systems161
4.5Block Systems174
4.6Vandermonde Systems and the FFT183
4.7Toeplitz and Related Systems193
5Orthogonalization and Least Squares206
5.1Householder and Givens Matrices208
5.2The QR Factorization223
5.3The Full Rank LS Problem236
5.4Other Orthogonal Factorizations248
5.5The Rank Deficient LS Problem256
5.6Weighting and Iterative Improvement264
5.7Square and Underdetermined Systems270
6Parallel Matrix Computations275
6.1Basic Concepts276
6.2Matrix Multiplication292
6.3Factorizations300
7The Unsymmetric Eigenvalue Problem308
7.1Properties and Decompositions310
7.2Perturbation Theory320
7.3Power Iterations330
7.4The Hessenberg and Real Schur Forms341
7.5The Practical QR Algorithm352
7.6Invariant Subspace Computations362
7.7The QZ Method for Ax=A Bx375
8The Symmetric Eigenvalue Problem391
8.1Properties and Decompositions393
8.2Power Iterations405
8.3The Symmetric QR Algorithm414
8.4Jacobi Methods426
8.5Tridiagonal Methods439
8.6Computing the SVD448
8.7Some Generalized Eigenvalue Problems461
9Lanczos Methods470
9.1Derivation and Convergence Properties471
9.2Practical Lanczos Procedures479
9.3Applications to Ax=b and Least Squares490
9.4Arnoldi and Unsymmetric Lanczos499
10Iterative Methods for Linear Systems508
10.1The Standard Iterations509
10.2The Conjugate Gradient Method520
10.3Preconditioned Conjugate Gradients532
10.4Other Krylov Subspace Methods544
11Functions of Matrices555
11.1Eigenvalue Methods556
11.2Approximation Methods562
11.3The Matrix Exponential572
12Special Topics579
12.1Constrained Least Squares580
12.2Subset Selection Using the SVD590
12.3Total Least Squares595
12.4Computing Subspaces with the SVD601
12.5Updating Matrix Factorizations606
12.6Modified/Structured Eigenproblems621
Index637
5.2The QR Factorization223
5.3The Full Rank LS Problem236
5.4Other Orthogonal Factorizations248
5.5The Rank Deficient LS Problem256
5.6Weighting and Iterative Improvement264
5.7Square and Underdetermined Systems270
6Parallel Matrix Computations275
6.1Basic Concepts276
6.2Matrix Multiplication292
6.3Factorizations300
7The Unsymmetric Eigenvalue Problem308
7.1Properties and Decompositions310
7.2Perturbation Theory320
7.3Power Iterations330
7.4The Hessenberg and Real Schur Forms341
7.5The Practical QR Algorithm352
7.6Invariant Subspace Computations362
7.7The QZ Method for Ax=A Bx375
8The Symmetric Eigenvalue Problem391
8.1Properties and Decompositions393
8.2Power Iterations405
8.3The Symmetric QR Algorithm414
8.4Jacobi Methods426
8.5Tridiagonal Methods439
8.6Computing the SVD448
8.7Some Generalized Eigenvalue Problems461
9Lanczos Methods470
9.1Derivation and Convergence Properties471
9.2Practical Lanczos Procedures479
9.3Applications to Ax=b and Least Squares490
9.4Arnoldi and Unsymmetric Lanczos499
10Iterative Methods for Linear Systems508
10.1The Standard Iterations509
10.2The Conjugate Gradient Method520
10.3Preconditioned Conjugate Gradients532
10.4Other Krylov Subspace Methods544
11Functions of Matrices555
11.1Eigenvalue Methods556
11.2Approximation Methods562
11.3The Matrix Exponential572
12Special Topics579
12.1Constrained Least Squares580
12.2Subset Selection Using the SVD590
12.3Total Least Squares595
12.4Computing Subspaces with the SVD601
12.5Updating Matrix Factorizations606
12.6Modified/Structured Eigenproblems621
Index637