王昌棟

王昌棟,男,博士,中山大學數據科學與計算機學院副教授,博士生導師。

基本介紹

  • 中文名:王昌棟
  • 職業:教師
  • 畢業院校:中山大學
  • 學位/學歷:博士
  • 職務:中山大學博士生導師
  • 職稱:副教授
研究領域,人物經歷,獲獎記錄,科研項目,學術兼職,教授課程,代表性論著,

研究領域

數據挖掘、人工智慧
1、網路分析(社交網路)
2、數據聚類
3、醫學數據處理
4、推薦算法
5、精準教育

人物經歷

2004年9月至2008年7月在中山大學攻讀數學與套用數學專業,並同時攻讀計算機科學與技術專業,2008年獲得中山大學理學學士學位。2008年9月至2013年7月在中山大學碩博連讀,攻讀計算機套用技術專業,2013年獲得中山大學工學博士學位。2011年曾獲首屆廣州市菁英計畫公派留學項目資助,作為聯合培養博士生,於2011年12月至2012年11月在美國伊利諾大學-芝加哥校區留學,師從IEEE Fellow Philip S. Yu。

獲獎記錄

  1. 2018年度廣東省科學技術獎(自然科學獎)一等獎;視覺魯棒特徵提取與非線性分析;全部完成人:賴劍煌,鄭偉詩,謝曉華,阮邦志,王昌棟,朱俊勇,馬錦華,黃劍;完成單位:中山大學,香港浸會大學.
  2. 2016年“廣東特支計畫”科技創新青年拔尖人才.
  3. 2016年廣東省自然科學基金-傑出青年科學基金獲得者.
  4. 2015年中國人工智慧學會優秀博士學位論文.
  5. 2014年中國計算機學會優秀博士學位論文提名獎.
  6. SIAM SDM 2013 Student Travel Award.
  7. 2012 Microsoft Research Asia (MSRA) Fellowship Nomination Award.
  8. IEEE ICDM 2011 Student Travel Award.
  9. IEEE ICDM 2010 Honorable Mention Award for the Best Research Paper.
  10. IEEE ICDM 2010 Student Travel Award.

科研項目

1) 2019年度中山大學高校基本科研業務費-新興學科交叉學科資助計畫項目,基於腦電數據分析的人工耳蝸術後耳聾患者大腦功能康復系統建立及其臨床示範套用,No. ***,2019 .01-2020.12,主持,40萬
2) 2019年國家自然科學基金-面上項目,基於相似度學習的異構數據聚類算法研究及其套用,No. 61876193,2019.01-2022.12,主持,65萬
3) 2019年國家重點研發計畫項目“社區風險監測與防範關鍵技術研究”課題5 “‘數據-計算’深度互動的社區風險情景計算與預測技術”,No. 2018YFC0809705,2018.07-2021.06,課題5中山大學負責人,69萬
4) 2019年“廣州市高校創新創業教育項目” 廣州市大學生創新創業項目綜合信息服務平台建設, No. 2019PT204,2019.01-2020.12,參與方主持,100萬
5) 2016年“廣東特支計畫”科技創新青年拔尖人才,No. 2016TQ03X542,2017.04-2020.04,主持,30萬
6) 2016年國家重點研發計畫項目“面向大範圍場景透徹感知的視覺大數據智慧型分析關鍵技術與驗證系統”課題3“群體視覺大數據的透徹感知關鍵技術”,No. 2016YFB1001003,2016.07 -2020.06,課題3項目骨幹,1820萬
7) 2016年廣東省自然科學基金-傑出青年科學基金,大數據非線性聚類方法及其套用,No. 2016A030306014,2016.06.01-2020.06.01,主持,100萬
8) 2016年度中山大學高校基本科研業務費青年教師科研資助計畫項目-重點培育項目,基於社交網路的大數據推薦算法及其套用,No. 67000-31620001,2016.01-2017.12,主持,30萬
9) 2015年度廣東省前沿與關鍵技術創新專項資金-重大科技專項,基於自主分散式資料庫的大數據記憶體計算技術研發及套用,No. 2015B010108001,2013.08-2016.05,高校方主持,300萬
10) 2016年國家自然科學基金-青年科學基金,具有耦合性結構的多視圖社交網路社區發現算法研究及其套用,No. 61502543,2016.01-2018.12,主持,24.6萬
11) 2015年廣東省自然科學基金-博士啟動項目,多視圖聚類新方法及其套用,No. 2014A030310180,2015.01-2018.01,主持,10萬
12) 2014年CCF-騰訊犀牛鳥科研基金,異構社交網路動態社區檢測,No. CCF-TencentRAGR20140112,2014.09.20-2015.10.01,主持,10萬
13)2013年度中山大學高校基本科研業務費青年教師科研資助計畫項目-培育項目,基於計算機視覺技術的商業零售移動大數據採集與分析,No. 46000-3161006,2014.01.01 -2015.12.31,主持,15萬

學術兼職

他是人工智慧權威期刊Journal of Artificial Intelligence Research(JAIR,CCF B類SCI)的編委(AE),也是十幾個國際刊物如IEEE TPAMI、JMLR、IEEE TKDE、IEEE TNNLS、IEEE TCYB、PR等的審稿人,是KDD(2019)、IJCAI(2019)、AAAI(2017、2018、2019、2020)、CIKM (2019)、IEEE ICDM (2014、2015、2016、2018、2019)的程式委員,是中國模式識別與計算機視覺學術會議PRCV 2018的網站主席。他是中國人工智慧學會-模式識別專業委員會委員,中國計算機學會-資料庫專業委員會委員,中國計算機學會-計算機視覺專業委員會委員,CCF-YOCSEF廣州副主席(2018-2019) ,CCF廣州分部副主席(2019.3-2021.3)。

教授課程

1) 2013 IBM Big Data Platform Course (One of the 20 courses supported by IBM in China).
2) 2013 Fall: Linear Algebra (required course, 300 students, 100 students per class, 4 hours per class each week).
3) 2014 Spring: Numerical Analysis (selective course, 300 students, 150 students per class, 3 hours per class each week).
4) 2014 Fall: Cloud Application Development (required course, 300 students, 150 students per class, 4 hours per class each week).
5) 2015 Spring: Data Mining (selective course, 80 students, 2 hours each week).
6) 2015 Spring: Numerical Analysis (selective course, 500 students, 150 students per class, 3 hours per class each week).
7) 2015 Fall: Cloud Application Development (required course, 450 students, 150 students per class, 4 hours per class each week).
8) 2016 Cloud Computing Course (One of the 20 courses supported by IBM in China).
9) 2016 Spring: Data Mining (selective course, 25 students, 2 hours each week).
10) 2016 Spring: Numerical Analysis (selective course, 500 students, 150 students per class, 3 hours per class each week).
11) 2017 Spring: Data Mining (selective course, 120 students, 2 hours each week)
12) 2017 Fall: Cloud Application Development (required course, 300 students, 150 students per class, 4 hours per class each week).
13) 2018 Spring: Data Mining (selective course, 240 students, 120 students per class, 4 hours each week).
14) 2018 Fall: Graduate Student English (selective course for master students, 10 students, 10 students per class, 2 hours per class each week).
15) 2019 Spring: Data Mining and Machine Learning (required course, 60 students, 60 students per class, 3 hours per class each week).
16) 2020 Fall: Data Analysis Application (selective course, 60 students, 60 students per class, 2 hours per class each week).

代表性論著

2019:
1) Chang-Dong Wang, Zhi-Hong Deng (Undergraduate), Jian-Huang Lai* and Philip S. Yu. Serendipitous Recommendation in E-commerce using Innovator-Based Collaborative Filtering. IEEE Transactions on Cybernetics (IF=7.384,中科院分區表1區), Vol. 49, No. 7, pp. 2678-2692, 2019.
2) Pei-Zhen Li (Graduate student), Ling Huang (Graduate student), Chang-Dong Wang*, Jian-Huang Lai. EdMot: An Edge Enhancement Approach for Motif-aware Community Detection. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’19, CCF A類, Oral presentation, Acceptance rate 9.1%), Anchorage, Alaska USA, August 4-8, 2019, pp. 479-487.
3) Wu-Dong Xi (Undergraduate), Ling Huang (Graduate student), Chang-Dong Wang*, Yin-Yu Zheng(Undergraduate), Jian-Huang Lai. BPAM: Recommendation Based on BP Neural Network with Attention Mechanism. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI’19, CCF A類, Acceptance rate 17.9%), Macao, China, August 10-16, 2019, pp. 3905-3911.
4) Dong Huang, Chang-Dong Wang*, Jian-Sheng Wu, Jian-Huang Lai, and Chee-Keong Kwoh. Ultra-Scalable Spectral Clustering and Ensemble Clustering. IEEE Transactions on Knowledge and Data Engineering (IF=3.438,中科院分區表2區), in press, 2019.
5) Zhi-Hong Deng (Graduate student), Ling Huang(Graduate student), Chang-Dong Wang*, Jian-Huang Lai and Philip S. Yu. DeepCF: A Unified Framework of Representation Learning and Matching Function Learning in Recommender System. In Proc. of the 33rd AAAI Conf. on Artificial Intelligence (AAAI'19, CCF A類, Acceptance rate 16.2%, Oral), Honolulu, Hawaii, USA, Jan. 27-Feb. 1, 2019, pp. 61-68.
6) Ling Huang (Graduate student), Chang-Dong Wang* and Hong-Yang Chao. Higher-Order Multi-layer Community Detection. In Proc. of the 33rd AAAI Conf. on Artificial Intelligence (AAAI'19, CCF A類,Poster Session), Honolulu, Hawaii, USA, Jan. 27-Feb. 1, 2019, pp. 9945-9946.
7) Ling Huang (Graduate student), Hong-Yang Chao and Chang-Dong Wang*. Multi-View Intact Space Clustering. Pattern Recognition (IF=4.582,中科院分區表2區), Vol. 86, pp. 344-353, 2019.
8) Ling Huang (Graduate student), Chang-Dong Wang* and Hong-Yang Chao. oComm: Overlapping Community Detection in Multi-view Brain Network. IEEE/ACM Transactions on Computational Biology and Bioinformatics (IF=2.428,中科院分區表3區,CCF B類期刊). In press, 2019.
9) He Huang*, Changhu Wang, Philip S. Yu and Chang-Dong Wang. Generative Dual Adversarial Network for Generalized Zero-shot Learning. In Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'2019, CCF A類, Acceptance rate 25.2%), Long Beach, CA, USA, June 16- June 20, 2019, pp. 801-810.
10) Shi-Ting Zhong (Undergraduate), Ling Huang (Graduate student), Chang-Dong Wang, and Jian-Huang Lai. Constrained Matrix Factorization for Course Score Prediction. In Proc. of the 19th Int. Conf. on Data Mining (ICDM'19, CCF B類, Acceptance rate 18.5%), Beijing China, Nov. 8-11, 2019, pp. ***-***.
11) Yu-Xuan Ji (Graduate student), Ling Huang (Graduate student), Heng-Ping He (Graduate student), Chang-Dong Wang*, Guangqiang Xie, Wei Shi (Graduate student), and Kun-Yu Lin (Graduate student). Multi-view Outlier Detection in Deep Intact Space. In Proc. of the 19th Int. Conf. on Data Mining (ICDM'19, CCF B類, Acceptance rate 18.5%), Beijing China, Nov. 8-11, 2019, pp. ***-***.
12) Youwei Liang (Undergraduate), Dong Huang*, and Chang-Dong Wang. Consistency Meets Inconsistency: A Unified Graph Learning Framework for Multi-view Clustering. In Proc. of the 19th Int. Conf. on Data Mining (ICDM'19, CCF B類, Acceptance rate 18.5%), Beijing China, Nov. 8-11, 2019, pp. ***-***.
13) Yi-Ming Wen (Undergraduate), Ling Huang (Graduate student), Chang-Dong Wang*, and Kun-Yu Lin (Graduate student). Direction Recovery in Undirected Social Networks Based on Community Structure and Popularity. Information Sciences (IF=4.832, 中科院分區表1區), Vol. 473, pp. 31-43, 2019.
14) Han Zhang(Undergraduate), Chang-Dong Wang*, Jian-Huang Lai and Philip S. Yu. Community Detection Using Multilayer Edge Mixture Model. Knowledge and Information Systems (IF=2.004,中科院分區表3區), Vol. 60, pp. 757-779, 2019.
15) Ling Huang (Graduate student), Zhi-Lin Zhao (Graduate student), Chang-Dong Wang*, Dong Huang and Hong-Yang Chao. LSCD: Low-Rank and Sparse Cross-Domain Recommendation. Neurocomputing (IF=3.317,中科院分區表2區). In press, 2019.
16) Qi-Ying Hu (Graduate student), Ling Huang (Graduate student), Chang-Dong Wang* and Hong-Yang Chao. Item Orientated Recommendation by Multi-view Intact Space Learning with Overlapping. Knowledge-Based Systems (IF=4.529, 中科院分區表2區), Vol. 164, pp. 358-370, 2019.
17) Ling Huang (Graduate student), Chang-Dong Wang*, Hong-Yang Chao, Jian-Huang Lai and Philip S. Yu. A Score Prediction Approach for Optional Course Recommendation via Cross-User-Domain Collaborative Filtering. IEEE Access (IF=3.557, 中科院分區表2區), Vol. 7, pp. 19550-19563, 2019.
18) Pei-Zhen Li (Graduate student), Ling Huang (Graduate student)*, Chang-Dong Wang, Chuan Li, Jian-Huang Lai. Brain Network Analysis for Auditory Disease: A Twofold Study. Neurocomputing (IF=3.317,中科院分區表2區). In press, 2019.
19) Xiuchun Xiao, Neal Xiong*, Jianhuang Lai, Chang-Dong Wang, Zhenan Sun and Jingwen Yan. A Local Consensus Index Scheme for Random-Valued Impulse Noise Detection Systems. IEEE Transactions on Systems Man Cybernetics-Systems (IF=2.35, 中科院分區表3區), In press, 2019.
20) Wei Shi (Graduate student), Ling Huang (Graduate student)*, Chang-Dong Wang, Juan-Hui Li (Graduate student), Yong Tang and Cheng-Zhou Fu. Network Embedding via Community Based Variational Autoencoder. IEEE Access (IF=3.557, 中科院分區表2區), Vol. 7, pp. 25323-25333, 2019.
21) Juan-Hui Li (Graduate student), Ling Huang (Graduate student)*, Chang-Dong Wang, Dong Huang, Jian-Huang Lai. PartNRL: Partial Nodes Representation Learning in Large-scale Network. IEEE Access (IF=3.557, 中科院分區表2區), Vol. 7, pp. 56457-56468, 2019.
22) Kai Wang (Graduate student), Ling Huang (Graduate student)*, Chang-Dong Wang, Yong Tang and Cheng-Zhou Fu. Inter-Intra Information Preserving Attributed Network Embedding. IEEE Access (IF=3.557, 中科院分區表2區), Vol. 7, pp. 79463-79476, 2019.
23) Dong Huang, Xiaosha Cai, and Chang-Dong Wang*. Unsupervised Feature Selection with Multi-Subspace Randomization and Collaboration. Knowledge-Based Systems (IF=4.529, 中科院分區表2區), in press, 2019.
24) Man-Sheng Chen (Graduate student), Ling Huang (Graduate student), Chang-Dong Wang*, and Dong Huang. Multi-view Spectral Clustering via Multi-view Weighted Consensus and Matrix-decomposition based Discretization. In Proc. of the 24th International Conference on Database Systems for Advanced Applications (DASFAA'19, CCF B類), Chiang Mai, Thailand, 22-25 April 2019, pp. 175-190.
25) Weixin Zeng, Xiang Zhao*, Jiuyang Tang, Jinzhi Liao and Chang-Dong Wang. Relevance-Based Entity Embedding. In Proc. of the 24th International Conference on Database Systems for Advanced Applications (DASFAA'19, CCF B類), Chiang Mai, Thailand, 22-25 April 2019, pp. 300-304.
26) Guangqiang Xie*, Tianxiang Lan, Xianbiao Hu, Yang Li, Chang-Dong Wang, Yuyu Yin. Mobile Computing During Multi-Agent Systems Convergence Using Consensus Protocol-Based Neighbor Selection Strategy.IEEE Access (IF=3.557, 中科院分區表2區), In press, 2019.
27) Zhi-Ran Sun(Undergraduate), Yue-Xin Cai*, Shao-Ju Wang, Chang-Dong Wang, Yi-Qing Zheng, Yan-Hong Chen and Yu-Chen Chen. Multi-view Intact Space Learning for Tinnitus Classification in Resting State EEG. Neural Processing Letters (IF=1.605,中科院分區表3區), Vol. 49, No. 2, pp. 611-624, 2019.
28) Pei-Zhen Li(Graduate student), Yue-Xin Cai*, Chang-Dong Wang, Mao-Jin Liang and Yi-Qing Zheng. Higher-order Brain Network Analysis for Auditory Disease. Neural Processing Letters (IF=1.605,中科院分區表3區), Vol. 49, pp. 879-897, 2019.
29) Yuexin Cai, Suijun Chen, Yanhong Chen, Jiahong Li, Chang-Dong Wang, Fei Zhao, Caiping Dang, Jianheng Liang, Nannan He, Maojin Liang and Yiqing Zheng*. Altered Resting-State EEG Microstate in Sudden Sensorineural Hearing Loss Patients with Tinnitus. Frontiers in Neuroscience (IF=3.877, 中科院分區表2區), Vol. 13, pp. 1-9, 2019.
30) Kai Wang (Graduate student), Lei Xu (Graduate student), Ling Huang (Graduate student)*, Chang-Dong Wang and Jian-Huang Lai. SDDRS: Stacked Discriminative Denoising Auto-Encoder based Recommender System. Cognitive Systems Research (IF=1.425,中科院分區表4區), Vol. 55, pp. 164-174, 2019.
2018:
1)Dong Huang, Chang-Dong Wang* and Jian-Huang Lai. Locally Weighted Ensemble Clustering. IEEE Transactions on Cybernetics(IF=7.384,中科院分區表1區), Vol. 48, No. 5, pp. 1460-1473, 2018.
2)Juan-Hui Li(Undergraduate), Chang-Dong Wang*, Pei-Zhen Li(Undergraduate) and Jian-Huang Lai. Discriminative Metric Learning for Multi-view Graph Partitioning. Pattern Recognition (IF=4.582,中科院分區表2區), Vol. 75, pp. 199-213, 2018.
3) Ling Huang (Graduate student), Chang-Dong Wang* and Hong-Yang Chao. A Harmonic Motif Modularity Approach for Multi-layer Network Community Detection. In Proc. of the 18th Int. Conf. on Data Mining (ICDM'18, CCF B類, Acceptance rate 19.94%), Singapore, Nov. 17-20, 2018, pp. 1043–1048.
4) Ling Huang(Graduate student), Chang-Dong Wang* and Hong-Yang Chao. Overlapping Community Detection in Multi-view Brain Network. In Proc. of the 2018 Int. Conf. on Bioinformatics and Biomedicine (BIBM'18, CCF B類), Madrid, Spain, Dec. 3-6, 2018, pp. 655-658.
5) He Huang, Bokai Cao, Philip S. Yu*, Chang-Dong Wang, and Alex D. Leow. dpMood: Exploiting Local and Periodic Typing Dynamics for Personalized Mood Prediction. In Proc. of the 18th Int. Conf. on Data Mining (ICDM'18, CCF B類, Acceptance rate 19.94%), Singapore, Nov. 17-20, 2018, pp. 157–166.
6) Guang-Yu Zhang(Graduate student), Chang-Dong Wang*, Dong Huang, Wei-Shi Zheng and Yu-Ren Zhou. TW-Co-k-means: Two-level Weighted Collaborative k-means for Multi-view Clustering. Knowledge-Based Systems (IF=4.529, 中科院分區表2區), Vol. 150, pp. 127-138, 2018.
7) Pei-Zhen Li(Graduate student), Ling Huang(Graduate student), Chang-Dong Wang*, Dong Huang and Jian-Huang Lai. Community Detection Using Attribute Homogenous Motif. IEEE Access (IF=3.557, 中科院分區表2區), Vol. 6, pp. 47707-47716, 2018.
8)Dong Huang*, Chang-Dong Wang, Hongxing Peng, Jianhuang Lai and Chee-Keong Kwoh. Enhanced Ensemble Clustering via Fast Propagation of Cluster-Wise Similarities. IEEE Transactions on Systems Man Cybernetics-Systems (IF=2.35, 中科院分區表3區), In press, 2018.
9)Lei Xu(Undergraduate), Chang-Dong Wang*, Mao-Jin Liang, Yue-Xin Cai and Yi-Qing Zheng. Brain Network Regional Synchrony Analysis in Deafness. Biomed Research International (IF=2.476,中科院分區表3區), Vol. 2018, pp. 1-11, 2018.
10)Juan-Hui Li(Graduate student), Chang-Dong Wang*, Ling Huang(Graduate student), Dong Huang, Jian-Huang Lai and Pei Chen. Attributed Network Embedding with Micro-Meso Structure. In Proc. of The 23rd International Conference on Database Systems for Advanced Applications (DASFAA 2018, CCF B類), Gold Coast, Australia, May 21-24, 2018, pp. 20-36.
11)Kun-Yu Lin(Graduate student), Ling Huang(Graduate student), Chang-Dong Wang* and Hong-Yang Chao. Multi-view Proximity Learning for Clustering. In Proc. of The 23rd International Conference on Database Systems for Advanced Applications (DASFAA 2018, CCF B類), Gold Coast, Australia, May 21-24, 2018, pp. 407-423.
12)Zhi-Lin Zhao(Graduate student), Ling Huang(Graduate student), Chang-Dong Wang* and Dong Huang. Low-Rank and Sparse Cross-Domain Recommendation Algorithm. In Proc. of The 23rd International Conference on Database Systems for Advanced Applications (DASFAA 2018, CCF B類), Gold Coast, Australia, May 21-24, 2018, pp. 150-157.
13)Yi-Ming Wen(Undergraduate), Chang-Dong Wang* and Kun-Yu Lin(Graduate student). Direction Recovery in Undirected Social Networks Based on Community Structure and Popularity. In Proc. of The 23rd International Conference on Database Systems for Advanced Applications (DASFAA 2018, CCF B類), Gold Coast, Australia, May 21-24, 2018, pp. 529-537.
14) Yi-Kun Qin, Zhu-Liang Yu*, Chang-Dong Wang, Zheng-Hui Gu and Yuan-Qing Li. A Novel Clustering Method based on Hybrid K-Nearest-Neighbor Graph.Pattern Recognition (IF=4.582,中科院分區表2區), Vol. 74, pp. 1-14, 2018.
15)Yuexin Cai, Dong Huang, Yanhong Chen, Haidi Yang, Chang-Dong Wang, Fei Zhao, Jiahao Liu, Yingfeng Sun, Guisheng Chen, Xiaoting Chen, Hao Xiong, Yiqing Zheng*. Deviant dynamics of resting state electroencephalogram microstate in patients with subjective tinnitus. Frontiers in Behavioral Neuroscience (IF=3.104, 中科院分區表2區), Vol. 12, pp. 1-9, 2018.
16)Ming-Chuan Tsai(Undergraduate), Yue-Xin Cai*, Chang-Dong Wang, Yiqing Zheng, Jia-Ling Ou and Yanhong Chen. Tinnitus Abnormal Brain Region Detection Based on Dynamic Causal Modeling and Exponential Ranking. Biomed Research International (IF=2.476,中科院分區表3區),, Vol. 2018, pp. 1-10, 2018.
2017:
1) Guang-Yu Zhang(Graduate student), Chang-Dong Wang*, Dong Huang and Wei-Shi Zheng. Multi-View Collaborative Locally Adaptive Clustering with Minkowski Metric. Expert Systems with Applications (IF=3.928,中科院分區表2區), Vol. 86, pp. 307-320, 2017.
2) Qi-Ying Hu(Graduate student), Zhi-Lin Zhao(Graduate student),Chang-Dong Wang*, Jian-Huang Lai. An Item Orientated Recommendation Algorithm from the Multi-view Perspective. Neurocomputing (IF=3.317,中科院分區表2區). Vol. 269, pp. 261-272, 2017.
3) Chao Chen(Undergraduate), Kun-Yu Lin(Undergraduate),Chang-Dong Wang*, Jian-Bo Liu(Undergraduate), Dong Huang. CCMS: A Nonlinear Clustering Method Based on Crowd Movement and Selection. Neurocomputing (IF=3.317,中科院分區表2區). Vol. 269, pp. 120-131, 2017.
4) Zhi-Lin Zhao(Graduate student), Chang-Dong Wang*, Kun-Yu Lin(Graduate student), and Jian-Huang Lai. Missing Value Learning. In Proc. of The 26th ACM International Conference on Information and Knowledge Management (CIKM 2017, CCF B類), Pan Pacific, Singapore, Nov. 6-10, 2017, pp. 2427-2430.
5) Zhi-Lin Zhao(Graduate student), Chang-Dong Wang*, Yuan-Yu Wan and Jian-Huang Lai. Recommendation in Feature Space Sphere. Electronic Commerce Research and Applications (IF=1.954, 中科院分區表3區), Vol. 26, pp.109-118, 2017.
6) Zhi-Lin Zhao(Graduate student), Ling Huang, Chang-Dong Wang*, Jian-Huang Lai and Philip S. Yu. Low-rank and Sparse Matrix Completion for Recommendation. In Proc. of The 24th International Conference on Neural Information Processing (ICONIP 2017, CCF C類), Guangzhou, China, Nov. 14-18, 2017, pp. 3-13.
7) Shao-Ju Wang(Undergraduate), Yue-Xin Cai, Zhi-Ran Sun(Undergraduate), Chang-Dong Wang* and Yi-Qing Zheng. Tinnitus EEG Classification Based on Multi-frequency Bands. In Proc. of The 24th International Conference on Neural Information Processing (ICONIP 2017, CCF C類), Guangzhou, China, Nov. 14-18, 2017, pp. 788-797.
8) Yi-Ning Xu(Undergraduate), Lei Xu(Undergraduate), Ling Huang and Chang-Dong Wang*. Social and Content based Collaborative Filtering for Point-of-Interest Recommendations. In Proc. of The 24th International Conference on Neural Information Processing (ICONIP 2017, CCF C類), Guangzhou, China, Nov. 14-18, 2017, pp. 46-56.
9) Xiang-Rui Peng(Graduate student), Ling Huang and Chang-Dong Wang*. A Hybrid Approach for Recovering Information Propagational Direction. In Proc. of The 24th International Conference on Neural Information Processing (ICONIP 2017, CCF C類), Guangzhou, China, Nov. 14-18, 2017, pp. 357-367.
10) Dong Huang, Chang-Dong Wang* and Jian-Huang Lai. LWMC: A locally weighted meta-clustering algorithm for ensemble clustering. In Proc. of The 24th International Conference on Neural Information Processing (ICONIP 2017, CCF C類), Guangzhou, China, Nov. 14-18, 2017, pp. 167-176.
11) Kun-Yu Lin(Undergraduate), Chang-Dong Wang*, Yu-Qin Meng(Undergraduate), and Zhi-Lin Zhao(Graduate student). Multi-view Unit Intact Space Learning. In Proc. of The 10th International Conference on Knowledge Science, Engineering and Management (KSEM 2017, CCF C類), Melbourne, Australia, Aug. 19-20, 2017, pp. 211-223.
12) Wen-Bin Liang(Undergraduate), Chang-Dong Wang* and Jian-Huang Lai. Weighted Numerical and Categorical Attribute Clustering in Data Streams. In Proc. of 2017 International Joint Conference on Neural Networks (IJCNN 2017, CCF C類), Anchorage, Alaska, USA, May 14-19, 2017, pp. 3066-3072.
13) Qian Zuo(Graduate student), Chang-Dong Wang* and Jian-Huang Lai. Text Clustering using Enhanced PLSA with Word Correlation. In Proc. of 2017 International Joint Conference on Neural Networks (IJCNN 2017, CCF C類), Anchorage, Alaska, USA, May 14-19, 2017, pp. 3216-3223.
14) Yue Ding(Undergraduate), Ling Huang, Chang-Dong Wang*, Dong Huang. Community Detection in Graph Streams by Pruning Zombie Nodes. In Proc. of the 21st Pacific Asia Conference on Knowledge Discovery and Data Mining 2017 (PAKDD’17, CCF C類), Jeju Island, Korea, May 23-26, 2017, pp. 574-585.
15) Ling Huang (Graduate student), Hong-Yang Chao* and Chang-Dong Wang. Multi-View Intact Space Clustering. In Proc. of the 4th Asian Conference on Pattern Recognition (ACPR), Nanjing, China, Nov. 26-29, 2017, pp. 500-505.
2016:
1) Chang-Dong Wang, Jian-Huang Lai* and Philip S. Yu. Multi-View Clustering Based on Belief Propagation. IEEE Transactions on Knowledge and Data Engineering(IF=3.438,中科院分區表2區), Vol. 28, No. 4, pp. 1007-1021, April, 2016.
2) Dong Huang, Jian-Huang Lai* and Chang-Dong Wang. Robust Ensemble Clustering Using Probability Trajectories. IEEE Transactions on Knowledge and Data Engineering (IF=3.438,中科院分區表2區), Vol. 28, No. 5, pp. 1312-1326, May, 2016.
3) Yu-Meng Xu(Graduate student), Chang-Dong Wang* and Jian-Huang Lai. Weighted Multi-view Clustering with Feature Selection. Pattern Recognition (IF=4.582,中科院分區表2區), Vol. 53, pp. 25-35, 2016.
4) Dong Huang, Jian-Huang Lai* and Chang-Dong Wang. Ensemble Clustering Using Factor Graph. Pattern Recognition (IF=4.582,中科院分區表2區), Vol. 50, pp. 131-142, 2016.
5) Dong Huang, Jian-Huang Lai* and Chang-Dong Wang. Ensembling Over-Segmentations: From Weak Evidence to Strong Segmentation. Neurocomputing (IF=3.317,中科院分區表2區), Vol. 207, pp. 416-427, 2016.
6) Zhi-Lin Zhao(Undergraduate), Chang-Dong Wang* and Jian-Huang Lai. AUI&GIV: Recommendation with Asymmetric User Influence and Global Importance Value. PLoS ONE(IF=3.234,中科院分區表3區), Vol. 11, No. 2, pp. e0147944, 2016.
7) Wen-Kai Huang(Undergraduate), Chang-Dong Wang*, Shao-Shu Huang(Undergraduate), Zheng Li(Undergraduate), Jian-Huang Lai and Ling Huang. Long-Term Revenue Maximization Pricing Scheme for Cloud. Computer Systems Science & Engineering(IJCSSE) (IF=0.52, 中科院分區表4區), pp. 5-13, 2016.
8) Dong Huang, Chang-Dong Wang*, Jian-huang Lai, Yun Liang, Shan Bian, Yu Chen. Ensemble-Driven Support Vector Clustering: From Ensemble Learning to Automatic Parameter Estimation. In Proc. of 2016 International Conference on Pattern Recognition (ICPR 2016, CCF C類), Cancun, Mexico, Dec. 4-8, 2016, pp. 444-449.
9) Juan-Hui Li(Undergraduate), Pei-Zhen Li(Undergraduate), Chang-Dong Wang* and Jian-Huang Lai. Community Detection in Complicated Network based on the Multi-view Weighted Signed Permanence. In Proc. of the 14th IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA 2016, CCF C類), Tianjin, China, Aug. 23-26, 2016, pp. 1589-1596.
10) Xun Wang(Undergraduate), Chang-Dong Wang* and Jian-Huang Lai. Modularity Optimization by Global-Local Search. In Proc. of 2016 International Joint Conference on Neural Networks (IJCNN 2016, CCF C類), Vancouver, Canada, July 24-29, 2016, pp. 840-846.
11) Zhi-Lin Zhao(Undergraduate), Chang-Dong Wang*, Yuan-Yu Wan(Undergraduate), Jian-Huang Lai and Dong Huang. FTMF: Recommendation in Social Network with Feature Transfer and Probabilistic Matrix Factorization. In Proc. of 2016 International Joint Conference on Neural Networks (IJCNN 2016, CCF C類), Vancouver, Canada, July 24-29, 2016, pp. 847-854.
12) Da-Chuan Zhang(Graduate student), Mei Li(Graduate student) and Chang-Dong Wang*. Point of Interest Recommendation with Social and Geographical Influence. In Proc. of 2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington D.C., USA, Dec. 5-8, 2016, pp. 1070-1075.
13) Yao-Ming Yang(Graduate student), Chang-Dong Wang* and Jian-Huang Lai. An Efficient Parallel Topic-Sensitive Expert Finding Algorithm Using Spark. In Proc. of the 2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington D.C., USA, Dec. 5-8, 2016, pp. 3556-3562.
2015:
1) Cheng-Xu Ye, Wu-Shao Wen* and Chang-Dong Wang. Chinese-Tibetan Bilingual Clustering Based on Random Walk. Neurocomputing (IF=3.317,中科院分區表2區), Vol. 158, pp. 32–41, 2015.
2) Dong Huang, Jian-Huang Lai* and Chang-Dong Wang. Combining Multiple Clusterings via Crowd Agreement Estimation and Multi-Granularity Link Analysis. Neurocomputing (IF=3.317,中科院分區表2區), Vol. 170, pp. 240-250, 2015.
3) Qi-Ying Hu(Undergraduate), Chang-Dong Wang*, Jia-Xin Hong(Undergraduate), Meng-Zhe Hua(Undergraduate) and Di Huang(Undergraduate). Traveller: A Novel Tourism Platform for Students Based on Cloud Data. In Proc. of 11th EAI International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2015, CCF C類), Wuhan, China, Nov. 10-11, 2015, pp. 26-35.
2014:
1) Chang-Dong Wang, Jian-Huang Lai* and Philip S. Yu. NEIWalk: Community Discovery in Dynamic Content-based Networks. IEEE Transactions on Knowledge and Data Engineering (IF=3.438,中科院分區表2區), Vol. 26, No. 7, pp. 1734-1748, July, 2014.
2) Qing-Song Zeng, Jian-Huang Lai* and Chang-Dong Wang. Multi-Local Model Image Set Matching Based on Domain Description. Pattern Recognition (IF=4.582,中科院分區表2區), Vol. 47, No. 2, pp. 697-704, 2014.
3) Xiu-Chun Xiao, Jian-Huang Lai* and Chang-Dong Wang. Parameter Estimation of the Exponentially Damped Sinusoids Signal Using a Specific Neural Network. Neurocomputing (IF=3.317,中科院分區表2區), Vol. 143, pp. 331-338, 2014.
4) Dong-Wei Chen, Jian-Qiang Sheng, Jun-Jie Chen and Chang-Dong Wang*. Stability-Based Preference Selection in Affinity Propagation. Neural Computing and Applications(IF=1.168,中科院分區表3區), Vol. 25, pp. 1809-1822, 2014.
2013:
1) Chang-Dong Wang, Jian-Huang Lai*, Ching Y. Suen and Jun-Yong Zhu. Multi-Exemplar Affinity Propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence(IF=8.329,中科院分區表1區), Vol. 35, No. 9, pp.2223-2237, Sept. 2013.
2) Chang-Dong Wang, Jian-Huang Lai*, Dong Huang and Wei-Shi Zheng. SVStream: A Support Vector Based Algorithm for Clustering Data Streams. IEEE Transactions on Knowledge and Data Engineering (IF=3.438,中科院分區表2區), Vol. 25, No. 6, pp. 1410-1424, June, 2013.
3) Chang-Dong Wang and Jian-Huang Lai*. Position Regularized Support Vector Domain Description. Pattern Recognition(IF=4.582,中科院分區表2區), Vol. 46, pp. 875-884, 2013.
4) Chang-Dong Wang, Jian-Huang Lai* and Philip S Yu. Dynamic Community Detection in Weighted Graph Streams. In Proc. of 2013 SIAM Int. Conf. on Data Mining (SDM’13,CCF B類), Austin, Texas, USA, May 2-4, 2013, pp. 151-161.
2012:
1) Chang-Dong Wang, Jian-Huang Lai* and Jun-Yong Zhu. Graph-Based Multiprototype Competitive Learning and its Applications. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications & Reviews(IF=2.02, 中科院分區表2區), Vol. 42, No. 6, pp. 934-946, Nov. 2012.
2) Chang-Dong Wang, Jian-Huang Lai* and Jun-Yong Zhu. Conscience Online Learning: An Efficient Approach for Robust Kernel-Based Clustering. Knowledge and Information Systems (IF=2.004,中科院分區表2區), Vol. 31, No. 1, pp. 79-104, 2012.
3) Jun Tan, Jian-Huang Lai*, Chang-Dong Wang, Wen-Xiao Wang and Xiao-Xiong Zuo. A New Handwritten Character Segmentation Method Based on Nonlinear Clustering. Neurocomputing (IF=3.317,中科院分區表2區), Vol. 89, pp. 213-219, 2012.
4) Dong Huang, Jian-Huang Lai* and Chang-Dong Wang. Incremental Support Vector Clustering with Outlier Detection. In Proc. of the 21st Int. Conf. on Pattern Recognition (ICPR'12, CCF C類), Tsukuba, Japan, Nov. 11-15, 2012. pp. 2339-2342.
2011:
1) Chang-Dong Wang and Jian-Huang Lai*. Energy Based Competitive Learning. Neurocomputing (IF=3.317,中科院分區表2區), Vol. 74, pp. 2265-2275, 2011.
2) Chang-Dong Wang, Jian-Huang Lai* and Dong Huang. Kernel-Based Clustering with Automatic Cluster Number Selection. In Proc. of the ICDM 2011 Workshop on The 6th Workshop on Optimization Based Techniques for Emerging Data Mining Problems, Vancouver, Canada, Dec. 11-14, 2011, pp. 293-299.
3) Chang-Dong Wang, Jian-Huang Lai* and Dong Huang. Incremental Support Vector Clustering. In Proc. of the ICDM 2011 Workshop on Large Scale Visual Analytics, Vancouver, Canada, Dec. 11-14, 2011, pp. 839-846.
4) Chang-Dong Wang, Jian-Huang Lai* and Wei-Shi Zheng. Message-Passing for the Traveling Salesman Problem. In CVPR 2011 Workshop on Inference in Graphical Models with Structured Potentials, Colorado Springs, USA, June 20-25, 2011.
5) Jian-Sheng Wu, Jian-Huang Lai* and Chang-Dong Wang. A Novel Co­clustering method with Intra-Similarities. In ICDM 2011 Workshop on The 6th Workshop on Optimization Based Techniques for Emerging Data Mining Problems, Vancouver, Canada, Dec. 11-14, 2011, pp. 300-306.
2010:
1) Chang-Dong Wang, Jian-Huang Lai* and Jun-Yong Zhu. A Conscience On­line Learning Approach for Kernel-Based Clustering. In Proc. of the 10th Int. Conf. on Data Mining (ICDM'10, CCF B類), Sydney, Australia, Dec. 14-17, 2010, pp. 531–540. (Regular paper, acceptance rate 72/797=9%). This paper is selected as a honorable mention for the "Best Research Paper" award, ranking the 4th among 155 accepted papers.
Book Chapters:
1) Chang-Dong Wang and Jian-Huang Lai*. Nonlinear Clustering: Methods and Applications, in Book “Unsupervised Learning Algorithms”, edited by M. Emre Celebi and Kemal Aydin. Springer, 2016, pp. 253-302

相關詞條

熱門詞條

聯絡我們