教育背景
1996年9月由河北省唐山市第一中學考入清華大學工程力學系學習,2000年7月獲工學學士學位,歷任熱六班班長、力學系學生會副主席;
2000年9月保送直接攻讀清華大學工程力學系碩博連讀研究生,研究方向為兩相流體動力學與湍流燃燒,2005年1月畢業並獲工學碩士、博士學位,歷任研究生班黨支部書記,清華大學研究生會副主席,清華大學研究生團委副書記,清華大學博士生報告團團長等。
工作履歷
2005年3月,進入清華大學航天航空學院工程力學系流體力學研究所工作,2008年5 月,回國後進入清華大學航天航空學院航空宇航工程系;目前招收航空宇航科學與技術、流體力學兩個學科博士研究生。
2006年10月-2008年4月,獲得德國洪堡(Alexander von Humboldt)獎學金,在德國慕尼黑工業大學流體動力學研究組訪問研究;後多次赴德國慕尼黑工業大學、德國亞琛工業大學、法國土魯斯流體力學研究所、波蘭華沙理工大學等研究機構進行短期訪學。
教學情況
熱愛教育教學事業,心繫學生,培養航空宇航、力學等專業人才;曾榮獲首都暑期社會實踐先進工作者(2019)、清華大學先進工作者(2019)、北京市高等教育教學成果獎一等獎(2018)、清華大學教學成果一等獎(2016)、清華大學青年教師教學優秀獎(2015)、清華大學優秀共產黨員(2015)等,還曾榮獲北京高校優秀德育工作者(2014)、清華大學林楓輔導員獎(2011)等。
承擔教學課程如下:
《推進原理與熱流體基礎》64學時(本科生)
《航空宇航工程全過程設計》32學時(本科生)
《發動機結構與系統設計》48學時(本科生,合講)
《航空宇航推進理論》64學時(研究生)
《航空宇航推進的數值方法》48學時(研究生)
《兩相流體動力學》 32學時(研究生)
《計算傳熱學》48學時(研究生,合講)
學術兼職
擔任美國AIAA增壓燃燒技術委員會委員(2019-)、VI區委員會委員(2020-);國際燃燒與能源利用大會(ICCEU)國際組織委員會委員(2019-2022);第五屆全國青年燃燒會議組委會委員(2019);第27屆國際爆炸與反應系統動力學會議(ICDERS)組委會委員(2019);第九屆國際爆震推進研討會(IWDP)大會主席(2018);中國力學學會激波與激波管專業委員會委員(2020-)、環境力學專業委員會委員(2015-2020);中國工程熱物理學會多相流分會副會長(2020-)、爆震與新型推進專業委員會委員(2017-2022);國際燃燒不穩定性大會科學委員會委員(2017);第十一屆工業爆炸與安全防護國際學術會議組委會副主席(2017)。
國家節能中心專家(2010年起)、教育部留學基金委評審專家(2012年起)、國家自然科學基金評審專家、浙江省自然科學基金評審專家、河北省自然科學基金評審專家、黑龍江省自然科學基金評審專家、黑龍江科技獎、河北科技獎、安徽省科技獎、山東省科技獎等評審專家。
《AIAA Journal》特邀編委,《Aerospace Science and Technology》副主編,《Journal of Engineering》主編,《Chinese Journal of Aeronautics》青年編委,《航空學報》、《推進技術》、《火箭推進》、《兵器裝備工程學報》、《氣體物理》、《清華大學學報》等期刊編委。
擔任《Journal of Fluid Mechanics》、《Physics of Fluids》、《Physics Fluids Review》、《Acta Astronautica》、《AIAA Journal》、《International Journal of Heat and Mass Transfer》、《Numerical Heat Transfer》、《Experimental Heat and Fluids》、《Applied Physics Letter》、《Shock Wave》、《ASME-Journal of Fluid Engineering》、《Journal of Aerospace Engineering》、《International Journal of Hydrogen Energy》等多個國際期刊和《推進技術》、《力學進展》、《航空學報》、《航空動力學報》等國內期刊審稿人。
所獲榮譽
北京市科學技術進步二等獎(2021,排名1)
中國發明協會發明創新獎一等獎(2020,排名1)
中國產學研合作促進會創新促進獎(2018,個人)
北京市教育教學成果獎一等獎(2018)
德國紐倫堡國際發明展發明金獎(2次)、日內瓦國際發明展銀獎(1次)、美國矽谷國際發明展金獎(1次)等
德國洪堡學者
AIAA副會士(2020)
德國慕尼黑工業大學TUM-大使Ambassador(2019)
ASME高級會員
APS-流體分會高級會員
學術成果
A. 強可壓氣液兩相流模型、算法及物理機理
Gao, Z.;Wu, W.; Sun, W.; Wang, B.*; 2021. Understanding the stabilization of a bulk nanobubble: a molecular dynamics analysis, Langmuir, 37(38), 11281-11291. https://doi.org/10.1021/acs.langmuir.1c01796(封面文章)
吳汪霞; 王兵; 王曉亮; 劉青泉; 2021. 非等強度多道衝擊波作用下空泡潰滅機制分析, 航空學報, 40 (x). http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25894
Wu, W.; Liu, Q.; Wang, B.; 2021. The effects of nanoscale nuclei on cavitation, 25th International Congress of Theoretical and Applied Mechanics - ICTAM, 2020+1, Milan, Italy, on August 22-27, 2021
Gao, Z.; Wu, W.; Wang, B.*; 2021. The effects of nanoscale nuclei on cavitation, Journal of Fluid Mechanics, 911, A20. https://doi.org/10.1017/jfm.2020.1049
Shahsavari, M.; Wang, B.*; Zhang, B.; Jiang, G.; Zhao, D.; 2021. Response of supercritical round jets to various excitation modes, Journal of Fluid Mechanics, 915, A47. https://doi.org/10.1017/jfm.2021.78
Wu, W.; Liu, Q.; Wang, B.*; 2021. Curved surface effect on high-speed droplet impingement, Journal of Fluid Mechanics, 909, A7. https://doi.org/10.1017/jfm.2020.926
Xiang, G.; Ren, Z.; Kim, S.; Wang, B.*.; 2020. Numerical analysis on the disintegration of gas-liquid interface in two-phase shear-layer flows, Aerospace Science and Technology, 98, 105710. https://doi.org/10.1016/j.ast.2020.105710
Wu, W.; Wang, B.*; Xiang, G.; 2019. Impingement of high-speed cylindrical droplets embedded with an air/vapour cavity on a rigid wall: numerical analysis, Journal of Fluid Mechanics, 864, 1058–1087. https://doi.org/10.1017/jfm.2019.55
Xiang, G.; Wang, B.*; 2019. Theoretical and numerical studies on shock reflection at water/air two-phase interface: fast-slow case, International Journal of Multiphase Flow, 114, 219–228. https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.002
Zhang, C.; Xiang, G.M.; Wang, B.; Hu, X.Y.*; Adams, N.A.; 2019. A weakly compressible SPH method with WENO reconstruction, Journal of Computational Physics, 392, 1–18. https://doi.org/10.1016/j.jcp.2019.04.038
Herty, M.; Müller, S.*; Gerhard, N.; Xiang, G.; Wang, B.; 2018. Fluid-structure coupling of linear elastic model with compressible flow models, International Journal for Numerical Methods in Fluids, 86, 365–391. https://doi.org/10.1002/fld.4422
Wang, B.; Xiang, G.; Hu, X.Y.*; 2018. An incremental-stencil WENO reconstruction for simulation of compressible two-phase flows, International Journal of Multiphase Flow, 104, 20–31. https://doi.org/10.1016/j.ijmultiphaseflow.2018.03.013
Wu, W.; Xiang, G.; Wang, B.*; 2018. On high-speed impingement of cylindrical droplets upon solid wall considering cavitation effects, Journal of Fluid Mechanics, 857, 851–877. https://doi.org/10.1017/jfm.2018.753
Xiang, G.; Wang, B.*; 2018. Numerical investigation on the interaction of planar shock wave with an initial ellipsoidal bubble in liquid medium, AIP Advances, 8, 075128. https://doi.org/10.1063/1.5047570(編輯精選)
Xiang, G.; Wang, B.*; 2017. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity, Journal of Fluid Mechanics, 825, 825–852. https://doi.org/10.1017/jfm.2017.403
Zhang, P.; Wang, B.*; 2017. Effects of elevated ambient pressure on the disintegration of impinged sheets, Physics of Fluids, 29, 042102. https://doi.org/10.1063/1.4981777
Hu, X.Y.*; Wang, B.; Adams, N.A.; 2015. An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme, Journal of Computational Physics, 301, 415–424. https://doi.org/10.1016/j.jcp.2015.08.043
B.強可壓縮反應流物理機制及動力學規律
Shahsavari, M.; Wang, B.*; Zhang, B.; Jiang, G.; Zhao, D.; 2021. Response of supercritical round jets to various excitation modes, Journal of Fluid Mechanics, 915. https://doi.org/10.1017/jfm.2021.78
Ren, Z.; Wang, B.*; Xiang, G.; Zhao, D.; Zheng, L.; 2019. Supersonic spray combustion subject to scramjets: progress and challenges, Progress in Aerospace Sciences, 105, 40–59. https://doi.org/10.1016/j.paerosci.2018.12.002
Ren, Z.; Wang, B.*; Zhang, F.; Zheng, L.; 2019. Effects of eddy shocklets on the segregation and evaporation of droplets in highly compressible shear layers, AIP Advances, 9, 125101. https://doi.org/10.1063/1.5125121
Ren, Z.; Wang, B.*; Hu, B.; Zheng, L.; 2018. Numerical analysis of supersonic flows over an aft-ramped open-mode cavity, Aerospace Science and Technology, 78, 427–437. https://doi.org/10.1016/j.ast.2018.05.003
Ren, Z.; Wang, B.*; Zhao, D.; Zheng, L.; 2018. Flame propagation involved in vortices of supersonic mixing layers laden with droplets: Effects of ambient pressure and spray equivalence ratio, Physics of Fluids, 30, 106107. https://doi.org/10.1063/1.5049840
Ren, Z.; Wang, B.*; Zheng, L.; 2018. Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets, Physics of Fluids, 30, 036101. https://doi.org/10.1063/1.5011708 (特色文章)
Ren, Z.; Wang, B.*; Zheng, L.; Zhao, D.; 2018. Numerical studies on supersonic spray combustion in high-temperature shear flows in a scramjet combustor, Chinese Journal of Aeronautics, 31, 1870–1879. https://doi.org/10.1016/j.cja.2018.06.020
Ren, Z.; Wang, B.*; Xie, Q.; Wang, D.; 2017. Thermal auto-ignition in high-speed droplet-laden mixing layers, Fuel, 191, 176–189. https://doi.org/10.1016/j.fuel.2016.11.073
Ren, Z.; Wang, B.*; Yang, S.; Xie, Q.; Liu, H.; Wang, D.; 2017. Evolution of flame kernel in one eddy turnover of high-speed droplet laden shear layers, Journal of Loss Prevention in the Process Industries, 49, 938–946. https://doi.org/10.1016/j.jlp.2017.05.009
Wang, B.*; Wei, W.; Zhang, Y.; Zhang, H.; Xue, S.; 2015. Passive scalar mixing in Mc <1 planar shear layer flows, Computers & Fluids, 123, 32–43. https://doi.org/10.1016/j.compfluid.2015.09.006
Zhang, Y.; Wang, B.*; Zhang, H.; Xue, S.; 2015. Mixing enhancement of compressible planar mixing layer impinged by oblique shock waves, Journal of Propulsion and Power, 31, 156–169. https://doi.org/10.2514/1.B35423
C.連續旋轉爆震與斜爆震
Ren, Z.; Wang, B.*; Zheng, L.; 2021. Wedge-induced oblique detonation waves in supersonic kerosene-air premixing flows with oscillating pressure, Aerospace Science and Technology, 110. https://doi.org/10.1016/j.ast.2020.106472
Ji, Z.; Duan, R.; Zhang, R.; Zhang, H.; Wang, B.*; 2020. Comprehensive performance analysis for the rotating detonation-based turboshaft engine, International Journal of Aerospace Engineering, 9587813. https://doi.org/10.1155/2020/9587813
Ji, Z.; Zhang, H.; Wang, B.*; He, W.; 2020. Comprehensive performance analysis of the turbofan with a multi-annular rotating detonation duct burner, Journal of Engineering for Gas Turbines and Power-Transactions 142(2), 021007. https://doi.org/10.1115/1.4045518
Ma, J.; Luan, M.; Xia, Z..; Wang, J.*; Zhang, S.; Yao, S.; Wang, B.; 2020. Recent progress, development trends, and consideration of continuous detonation engines, AIAA Journal, 58(12), 4976-5035. https://doi.org/10.2514/1.J058157
Ren, Z.; Wang, B.*; 2020. Numerical study on stabilization of wedge-induced oblique detonation waves in premixing kerosene-air mixtures, Aerospace Science and Technology, 107, 106245. https://doi.org/10.1016/j.ast.2020.106245
Wang, B.; Wang, J.; 2020. Introduction to the special section on recent progress on rotating detonation and its application, AIAA Journal, 58(12), 4974-4975. https://doi.org/10.2514/1.J060144
Wen, H.; Wang, B.*; 2020. Experimental study of perforated-wall rotating detonation combustors, Combustion and Flame, 213, 52-62. https://doi.org/10.1016/j.combustflame.2019.11.028
He, W.; Xie, Q.; Ji, Z.; Rao, Z.; Wang, B.*; 2019. Characterizing continuously rotating detonation via nonlinear time series analysis, Proceedings of the Combustion Institute, 37, 3433–3442. https://doi.org/10.1016/j.proci.2018.07.045
Ji, Z.; Zhang, H.; Wang, B.*; 2019. Performance analysis of dual-duct rotating detonation aero-turbine engine, Aerospace Science and Technology, 92, 806–819. https://doi.org/10.1016/j.ast.2019.07.011
Ren, Z.; Wang, B.*; Xiang, G.; Zheng, L.; 2019. Numerical analysis of wedge-induced oblique detonations in two-phase kerosene–air mixtures, Proceedings of the Combustion Institute, 37, 3627–3635. https://doi.org/10.1016/j.proci.2018.08.038
Wen, H.; Xie, Q.; Wang, B.*; 2019. Propagation behaviors of rotating detonation in an obround combustor, Combustion and Flame, 210, 389–398. https://doi.org/10.1016/j.combustflame.2019.09.008
Xie, Q.; Wang, B.*; Wen, H.; He, W.; 2019. Thermoacoustic instabilities in an annular rotating detonation combustor under off-design condition, Journal of Propulsion and Power, 35, 141–151. https://doi.org/10.2514/1.B37044
Xie, Q.; Wang, B.*; Wen, H.; He, W.; Wolanski, P.; 2019. Enhancement of continuously rotating detonation in hydrogen and oxygen-enriched air, Proceedings of the Combustion Institute, 37, 3425–3432. https://doi.org/10.1016/j.proci.2018.08.046
Ren, Z.; Wang, B.*; Xiang, G.; Zheng, L.; 2018. Effect of the multiphase composition in a premixed fuel–air stream on wedge-induced oblique detonation stabilisation, Journal of Fluid Mechanics, 846, 411–427. https://doi.org/10.1017/jfm.2018.289
Xie, Q.; Wen, H.; Li, W.; Ji, Z.; Wang, B.*; Wolanski, P.; 2018. Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition, Energy, 151, 408–419. https://doi.org/10.1016/j.energy.2018.03.062
Zheng, D.; Wang, B.*; 2018. Utilization of nonthermal plasma in pulse detonation engine ignition, Journal of Propulsion and Power, 34, 539–549. https://doi.org/10.2514/1.B36591
D.燃燒不穩定性機制、模型及調控
Shahsavari, M.*; Farshchi, M.; Arabnejad, M. H.; Wang, B.; 2021. The role of flame–flow interactions on lean premixed lifted flame stabilization in a low swirl flow, Combustion Science and Technology, 1-26. https://doi.org/10.1080/00102202.2021.1976766
Rao, Z.; Li, R.; Zhang, B.; Wang, B.*; Zhao, D.; Akhtar, M.S.; 2021. Experimental investigations of equivalence ratio effect on nonlinear dynamics features in premixed swirl-stabilized combustor, Aerospace Science and Technology, 112,106601. https://doi.org/10.1016/j.ast.2021.106601
Rao, Z.; Li, R.; Zhang, B.; Wang, B.*; Zhao, D.; Shahsavari, M.; 2021. Nonlinear dynamics of a swirl-stabilized combustor under acoustic excitations: influence of the excited combustor natural mode oscillations, Flow, Turbulence and Combustion, 107, 683-708. https://doi.org/10.1007/s10494-021-00249-y
Ji, S.; Wang, B.*; Zhao, D.; 2020. Numerical analysis on combustion instabilities in end-burning-grain solid rocket motors utilizing pressure-coupled response functions, Aerospace Science and Technology, 98, 105701. https://doi.org/10.1016/j.ast.2020.105701
Qin, J.; Zhou, L.; Zhang, H.*; Wang, B.; 2020. Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators, Science China-Technological Sciences, 64, 375-386. https://doi.org/10.1007/s11431-019-1575-6
Sun, Y.; Rao, Z.; Zhao, D.*; Wang, B.; Sun, D.; Sun, X.; 2020. Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor, Applied Energy, 264, 114698. https://doi.org/10.1016/j.apenergy.2020.114698
Zhang, B.; Shahsavari, M.; Rao, Z.; Li, R.; Yang, S.; Wang, B.*; 2020. Effects of the fresh mixture temperature on thermoacoustic instabilities in a lean premixed swirl-stabilized combustor, Physics of Fluids, 32, 047101. https://doi.org/10.1063/1.5133859
Ji, S.; Wang, B.*; 2019. Modeling and analysis of triggering pulse to thermoacoustic instability in an end-burning-grain model solid rocket motor, Aerospace Science and Technology, 95, 105409. https://doi.org/10.1016/j.ast.2019.105409
Shahsavari, M.*; Farshchi, M.; Chakravarthy, S.R.; Chakraborty, A.; Aravind, I.B.; Wang, B.; 2019. Low swirl premixed methane-air flame dynamics under acoustic excitations, Physics of Fluids, 31, 095106. https://doi.org/10.1063/1.5118826 (編輯精選)
Zhang, B.; Shahsavari, M.; Rao, Z.; Yang, S.; Wang, B.; 2019. Contributions of hydrodynamic features of a swirling flow to thermoacoustic instabilities in a lean premixed swirl stabilized combustor, Physics of Fluids, 31, 075106. https://doi.org/10.1063/1.5108856 (編輯精選)
Qin, J.; Zhang, H.; Wang, B.*; 2018. Numerical evaluation of acoustic characteristics and their damping of a thrust chamber using a constant-volume bomb model, Chinese Journal of Aeronautics, 31, 470–480. https://doi.org/10.1016/j.cja.2018.01.007
Qian, C.; Bing, W.*; Huiqiang, Z.; Yunlong, Z.; Wei, G.; 2016. Numerical investigation of H2/air combustion instability driven by large scale vortex in supersonic mixing layers, International Journal of Hydrogen Energy, 41, 3171–3184. https://doi.org/10.1016/j.ijhydene.2015.11.029
E.其他
Cai,T.; Backer, S.M.; Cao, F.; Wang, B.; Tang, A.; Fu, J.; Han, L.;Sun, Y.; Zhao, D.*; 2021. NOx emission performance assessment on a perforated plate-implemented premixed ammonia-oxygen micro-combustion system, Chemical Engineering Journal, 417, 128033. https://doi.org/10.1016/j.cej.2020.128033.
Jin, X.*; Huang, F.; Miao, W.; Cheng, X.; Wang, B.*; 2021. Effects of the boundary-layer thickness at the cavity entrance on rarefied hypersonic flows over a rectangular cavity, Physics of Fluids, 33,036116. https://doi.org/10.1063/5.0045056
Jin, X.*; Wang, B.; Cheng, X.; Wang, Q.; Huang, F.; 2021. Effects of corner rounding on aerothermodynamic properties in rarefied hypersonic flows over an open cavity, Aerospace Science and Technology, 110,106498. https://doi.org/10.1016/j.ast.2021.106498
Um, K.; Hu, X.; Wang, B.; Thuerey, N.; 2021. Spot the Difference: Accuracy of numerical simulations via the human visual system, ACM Transactions on Applied Perception, 18(2), 6:1-6:15. https://doi.org/10.1145/3449064
Cai, T.; Zhao, D.*; Wang,B.; Li,J.; Guan, Y.;2020. NOx emission and thermal performances studies on premixed ammonia-oxygen combustion in a CO2-free micro-planar combustor, Fuel, 280, 118554. https://doi.org/10.1016/j.fuel.2020.118554
Jin, X.*; Wang, B.; Cheng, X.; Wang, Q.; Huang, F.; 2020. The effects of Maxwellian accommodation coefficient and free-stream Knudsen number on rarefied hypersonic cavity flows, Aerospace Science and Technology, 97, 105577. https://doi.org/10.1016/j.ast.2019.105577
Jin, X.; Huang, F.; Cheng, X.; Wang, Q.; Wang, B.*; 2019. Monte Carlo simulation for aerodynamic coefficients of satellites in low-earth orbit, Acta Astronautica, 160, 222–229. https://doi.org/10.1016/j.actaastro.2019.04.012
Rao, Z.; Luo, Y.; Wang, B.*; Xie, Q.; He, W.; 2019. Mitigation of H2/air gaseous detonation via utilization of PAN-based carbon fibre felt, International Journal of Hydrogen Energy, 44, 5054–5062. https://doi.org/10.1016/j.ijhydene.2018.12.196