王兆才(上海海洋大學信息學院教師)

本詞條是多義詞,共2個義項
更多義項 ▼ 收起列表 ▲

王兆才,助教,男,生於1979年2月,籍貫山東濰坊,漢族。2006年3月畢業於上海交通大學套用數學專業,主要研究方向是生物數學DNA計算。承擔了高等數學線性代數機率論與數理統計等多門數學基礎課程的本科教學工作。

基本介紹

  • 中文名:王兆才
  • 性別:男
  • 出生年月:1979年2月
  • 籍貫:山東濰坊
  • 民族:漢族
  • 畢業院校:上海交通大學
  • 職稱:副教授
  • 工作單位:上海海洋大學
發表論文,

發表論文

主訂連匪持省部級項目8項,第一(通訊)作者發提章紋捉表SCI論嫌抹文50餘篇,近3年第一(催她擔愉通訊)論櫻匙蒸文洪嫌故如下:
[1] Yao, Z., Wang, Z.*, Cui, X., & Zhao, H. (2023). Research on multi-objectiveoptimal allocation of regional water resources based on improved sparrow searchalgorithm. Journal of Hydroinformatics. https://doi.org/10.2166/hydro.2023.037
[2] Tan, R., Hu, Y., &獄采應 Wang, Z.* (2023). A multi-source data-driven model of lake water level basedon variational modal decomposition and external factors with optimized bi-directionallong short-term memory neural network. Environmental Modelling & Software, 167,105766. https://doi.org/10.1016/j.envsoft.2023.105766
[3] Tan, R., Wang, Z.*, Wu, T., & Wu, J. (2023). A data-driven model for water qualityprediction in Tai Lake, China, using secondary modal decomposition withmultidimensional external features, Journal of Hydrology-Region study, 47, 101435.https://doi.org/10.1016/j.ejrh.2023.101435
[4] Wu, J., Dong, J., Wang, Z.*, Hu, Y., & Dou, W. (2023). A novel hybrid model based on deeplearning and error correction for crude oil futures prices forecast. ResourcesPolicy, 83, 103602. https://doi.org/10.1016/j.resourpol.2023.103602
[5] Cui, X., Wang, Z.*, & Pei, R. (2023). A VMD-MSMA-LSTM-ARIMA model forprecipitation prediction. Hydrological Sciences Journal, 68(6), 810-839. https://doi.org/10.1080/02626667.2023.2190896
[6] Wang, Z., Wang, Q., & Wu, T. (2023). A novel hybrid model for waterquality prediction based on VMD and IGOA optimized for LSTM, Frontiers of Environmental Science & Engineering, 17(7), 88. https://doi.org/10.1007/s11783-023-1688-y
[7] Wu, J., Wang, Z.*, Hu, Y., Tao, S. & Dong, J. (2023). Runoff Forecasting using ConvolutionalNeural Networks and optimized Bi-directional Long Short-term Memory, Water Resources Management, 37 (2), 937-953. https://doi.org/10.1007/s11269-022-03414-8
[8] Chen, L., Wu, T., Wang, Z.*, Lin, X., & Cai, Y. (2023). A novel hybrid BPNN model based onadaptive evolutionary Artificial Bee Colony Algorithm for water quality indexprediction. Ecological Indicators, 146, 109882. https://doi.org/10.1016/j.ecolind.2023.109882
[9] Wu, J., & Wang, Z.*. (2022). A hybrid model for water quality prediction based on anartificial neural network, wavelet transform, and long short-term memory. Water,14(4), 610. https://doi.org/10.3390/w14040610
[10] Guo, N., & Wang, Z.*. (2022). A combined model based on sparrow search optimized BPneural network and Markov chain for precipitation prediction in Zhengzhou City,China. AQUA—Water Infrastructure, Ecosystems and Society, 71(6), 782-800. https://doi.org/10.2166/aqua.2022.047
[11] Wu, J., Wang, Z.*, & Dong, L. (2021). Prediction and analysis of water resourcesdemand in Taiyuan City based on principal component analysis and BP neuralnetwork. AQUA—Water Infrastructure, Ecosystems and Society, 70(8), 1272-1286. https://doi.org/10.2166/aqua.2021.205
[12] Wu, X., Wang, Z.*, Wu, T., & Bao, X. (2022). Solvingthe Family Traveling Salesperson Problem in the Adleman–Lipton Model Based onDNA Computing. IEEE Transactions on NanoBioscience, 21(1), 75-85. https://doi.org/10.1109/TNB.2021.3109067
[13] Wang, Z., Deng, A., Wang, D., & Wu, T. (2022). Aparallel algorithm to solve the multiple travelling salesmen problem based on molecularcomputing model, InternationalJournal of Bio-Inspired Computation, 20(3), 160-171. https://doi.org/10.1504/ijbic.2022.127504
[14]Wang, Z., Wu, X., & Wu, T. (2022). A Parallel DNA Algorithm forSolving the Quota Traveling Salesman ProblemBased on Biocomputing Model, Computational Intelligence and Neuroscience, 2022,1450756. https://doi.org/10.1155/2022/1450756
[15] Wu, X., & Wang, Z.* (2022). Multi-objective optimal allocation of regional waterresources based on slime mould algorithm. The Journal of Supercomputing, 78 (16),18288-18317. https://doi.org/10.1007/s11227-022-04599-w
[16] Wang, Z., Wu, X., Wang, H., & Wu, T. (2021). Prediction and analysis of domesticwater consumption based on optimized grey and Markov model. Water Supply, 21(7),3887-3899. https://doi.org/10.2166/ws.2021.146
[17]Wang, Z.,Wang, D., Bao, X., & Wu, T.(2021). A parallel biological computing algorithm to solve the vertex coloring problemwith polynomial time complexity. Journal of Intelligent & Fuzzy Systems, 40(3),3957-3967. https://doi.org/10.3233/JIFS-200025
[18]Ren, X., Wang, X., Wang, Z.,& Wu, T. (2021). Parallel DNA algorithms of generalized traveling salesmanproblem based bioinspired computing model. International Journal of ComputationalIntelligence Systems, 14(1), 228-237. https://doi.org/10.2991/ijcis.d.201127.001
[19]Wang, Z.,Bao, X., & Wu, T.(2021). A parallel bioinspired algorithm for Chinese postman problem based onmolecular computing. Computational Intelligence and Neuroscience, 2021, 8814947. https://doi.org/10.1155/2021/8814947
[20]Wang, Z., Wu, X., Wang, H., & Wu, T. (2021). Prediction and analysis of domesticwater consumption based on optimized grey and Markovmodel. Water Supply, 21(7), 3887-3899. https://doi.org/10.2166/ws.2021.146
[21]Li, R., Chang, Y., & Wang, Z. (2021).Study of optimal allocation of water resources in Dujiangyan irrigationdistrict of China based on an improved genetic algorithm. Water Supply, 21(6),2989-2999. https://doi.org/10.2166/ws.2020.302
[6] Wang, Z., Wang, Q., & Wu, T. (2023). A novel hybrid model for waterquality prediction based on VMD and IGOA optimized for LSTM, Frontiers of Environmental Science & Engineering, 17(7), 88. https://doi.org/10.1007/s11783-023-1688-y
[7] Wu, J., Wang, Z.*, Hu, Y., Tao, S. & Dong, J. (2023). Runoff Forecasting using ConvolutionalNeural Networks and optimized Bi-directional Long Short-term Memory, Water Resources Management, 37 (2), 937-953. https://doi.org/10.1007/s11269-022-03414-8
[8] Chen, L., Wu, T., Wang, Z.*, Lin, X., & Cai, Y. (2023). A novel hybrid BPNN model based onadaptive evolutionary Artificial Bee Colony Algorithm for water quality indexprediction. Ecological Indicators, 146, 109882. https://doi.org/10.1016/j.ecolind.2023.109882
[9] Wu, J., & Wang, Z.*. (2022). A hybrid model for water quality prediction based on anartificial neural network, wavelet transform, and long short-term memory. Water,14(4), 610. https://doi.org/10.3390/w14040610
[10] Guo, N., & Wang, Z.*. (2022). A combined model based on sparrow search optimized BPneural network and Markov chain for precipitation prediction in Zhengzhou City,China. AQUA—Water Infrastructure, Ecosystems and Society, 71(6), 782-800. https://doi.org/10.2166/aqua.2022.047
[11] Wu, J., Wang, Z.*, & Dong, L. (2021). Prediction and analysis of water resourcesdemand in Taiyuan City based on principal component analysis and BP neuralnetwork. AQUA—Water Infrastructure, Ecosystems and Society, 70(8), 1272-1286. https://doi.org/10.2166/aqua.2021.205
[12] Wu, X., Wang, Z.*, Wu, T., & Bao, X. (2022). Solvingthe Family Traveling Salesperson Problem in the Adleman–Lipton Model Based onDNA Computing. IEEE Transactions on NanoBioscience, 21(1), 75-85. https://doi.org/10.1109/TNB.2021.3109067
[13] Wang, Z., Deng, A., Wang, D., & Wu, T. (2022). Aparallel algorithm to solve the multiple travelling salesmen problem based on molecularcomputing model, InternationalJournal of Bio-Inspired Computation, 20(3), 160-171. https://doi.org/10.1504/ijbic.2022.127504
[14]Wang, Z., Wu, X., & Wu, T. (2022). A Parallel DNA Algorithm forSolving the Quota Traveling Salesman ProblemBased on Biocomputing Model, Computational Intelligence and Neuroscience, 2022,1450756. https://doi.org/10.1155/2022/1450756
[15] Wu, X., & Wang, Z.* (2022). Multi-objective optimal allocation of regional waterresources based on slime mould algorithm. The Journal of Supercomputing, 78 (16),18288-18317. https://doi.org/10.1007/s11227-022-04599-w
[16] Wang, Z., Wu, X., Wang, H., & Wu, T. (2021). Prediction and analysis of domesticwater consumption based on optimized grey and Markov model. Water Supply, 21(7),3887-3899. https://doi.org/10.2166/ws.2021.146
[17]Wang, Z.,Wang, D., Bao, X., & Wu, T.(2021). A parallel biological computing algorithm to solve the vertex coloring problemwith polynomial time complexity. Journal of Intelligent & Fuzzy Systems, 40(3),3957-3967. https://doi.org/10.3233/JIFS-200025
[18]Ren, X., Wang, X., Wang, Z.,& Wu, T. (2021). Parallel DNA algorithms of generalized traveling salesmanproblem based bioinspired computing model. International Journal of ComputationalIntelligence Systems, 14(1), 228-237. https://doi.org/10.2991/ijcis.d.201127.001
[19]Wang, Z.,Bao, X., & Wu, T.(2021). A parallel bioinspired algorithm for Chinese postman problem based onmolecular computing. Computational Intelligence and Neuroscience, 2021, 8814947. https://doi.org/10.1155/2021/8814947
[20]Wang, Z., Wu, X., Wang, H., & Wu, T. (2021). Prediction and analysis of domesticwater consumption based on optimized grey and Markovmodel. Water Supply, 21(7), 3887-3899. https://doi.org/10.2166/ws.2021.146
[21]Li, R., Chang, Y., & Wang, Z. (2021).Study of optimal allocation of water resources in Dujiangyan irrigationdistrict of China based on an improved genetic algorithm. Water Supply, 21(6),2989-2999. https://doi.org/10.2166/ws.2020.302

相關詞條

熱門詞條

聯絡我們