王乃玉,女,博士,浙江大學建築工程學院研究員。
基本介紹
- 中文名:王乃玉
- 畢業院校:美國喬治亞理工學院
- 學位/學歷:博士
- 職業:教師
- 專業方向:韌性城市
- 任職院校:浙江大學建築工程學院
研究方向,個人經歷,學術成果,
研究方向
·韌性城市
·防災減災決策最佳化
·不確定性分析
·風險評估
個人經歷
現任浙江大學建工學院韌性城市研究中心主任。2010在美國喬治亞理工學院獲得博士學位, 師從美國工程院院士、結構風險評估領域的國際權威學者Bruce R. Ellingwood教授。2010-2013在美國知名結構諮詢公司SGH任高級結構顧問,負責各種特殊結構在極端荷載下的精確受力分析和風險評估。 2013-2018任美國俄克拉荷馬大學土木工程學院助理教授、博士生導師。
教育經歷:
2005/08 - 2010/08,美國喬治亞理工學院,土木工程,博士
2003/08 - 2005/08,美國田納西大學,土木工程,碩士
1996/09 - 2000/07,中國電子科技大學,建築工程,本科
工作經歷:
2018- 至今,浙江大學百人研究員,博導
2013- 2018,美國俄克拉荷馬大學,助理教授, 博導
2010- 2013,美國SGH結構諮詢公司, 高級顧問工程師
2010- 2010,美國喬治亞理工學院, 博士後
學術兼職:
專業學會
ASCE Standard Committee 7 on Minimum Design Loads for Buildings, Subcommittee onStrength Design Load Combinations, 委員(2010 –現在)
SEI-ASCE Technical Council on Life-Cycle Performance, Safety, Reliability and Risk ofStructural Systems, Task Group 3 (TG3) Risk Assessment of Structural InfrastructureFacilities and Risk-Based Decision Making,委員(2010 –現在)
NIST Community Resilience Panel - Committee on Data, Metrics & Tool,委員(2015-2016)
期刊編委
Journal of Sustainable and Resilience Infrastructure, 編委(2016-現在)
會議組織
International Conference on Applications of Statistics and Probability in Civil Engineering(ICASP13), 漢城, 韓國, 2019-專題研討會“Performance Based Engineering to SupportCommunity Resilience Goals”分會場主席(聯合主席:美國科羅拉多Prof. Bruce R. Ellingwood)
International Conference on Applications of Statistics and Probability in Civil Engineering(ICASP13), 漢城, 韓國, 2019-專題研討會“Modeling Recovery of Spatially Distributed Community PhysicalSystems from Natural Disasters”分會場主席(聯合主席:同濟大學劉威教授; 華中科技大學歐陽敏教授).
Structures Congress (StructCong2018), 德克薩斯,美國, 2018– 專題研討會“Community Recovery Planning: Bridging the Gap between Research and Practice” 分會場主席(聯合主席Prof. Paolo Bocchini atLehigh University, USA).
International Conference on Structural Safety and Reliability (ICOSSAR2017), 維也納,奧地利, 2017 – 專題研討會“The Role of Climate Change on Hurricanes, StormSurges and Coastal floods,” 分會場主席(聯合主席:美國伊利諾伊大學香檳分校Prof. Paolo Gardoni ).
International Conference on Applications of Statistics and Probability in Civil Engineering(ICASP12), 溫哥華, 加拿大, 2015 -專題研討會“Recent Developments inReliability and Cost Prediction of Building Inventories and Civil Infrastructure Systems”分會場主席(聯合主席美國科羅拉多Prof. Bruce R. Ellingwood ).
International Conference on Applications of Statistics and Probability in Civil Engineering(ICASP12), 溫哥華, 加拿大, 2015 - Member of Scientific Committee.
International Conference on Structural Safety and Reliability (ICOSSAR 2013), 紐約,美國, 2013 - – 專題研討會 “Reliability-based Methods for Civil InfrastructureCondition Assessment, Retrofit and Risk Management,” 分會場主席(聯合主席: 日本草稻田大學 Prof. Akiyama Mitsuyoshi).
SCI、SSCI、EI期刊審稿人
ASCE Journal of Structural Engineering
ASCE Journal of Bridge Engineering
ASCE Journal of Pipeline Systems Engineering and Practices
ASCE Journal of Natural Hazards Review
Journal of Hydrology
ournal of Sustainable and Resilience Infrastructure
Reliability Engineering and System Safety
Structure and Infrastructure Engineering
Structural Safety
學術成果
主持多項政府資助項目,包括:美國科技部 (NIST) 重大專項、美國自然科學基金(NSF)項目,以及交通部基金(DOT)、水資源研究基金(WRF)等項目,直接承擔的研究經費超過400萬美元;其間擔任美國科技部(NIST)資助的“基於風險的城市韌性規劃研究中心”(Center for Risk-Based Community Resilience Planning)的課題負責人, 並承擔美國自然科學基金委題為《滿足城市韌性和可持續發展目標的城市建築體系決策框架》(“A Risk-Informed Decision Framework to Achieve Resilient and Sustainable Buildings that Meet Community Objectives”)的基金項目。
科研:
建築群落
建築群落做為城市基礎設施的重要組成部分,包括住宅、商用和工業建築、醫院、學院、行政建築等。保證建築群落的災害韌性是城市防災減災的關鍵環節,原因在於:一方面,建築群落的功能需求依賴於城市生命線網路提供的基礎設施服務;另一方面,建築群落是否安全可靠直接影響居民和用戶的生活和工作質量,從而影響城市的經濟發展和社會穩定。本課題組提出了一系列建築群落抗震韌性評估與規劃的基本框架[Lin & Wang, 2018],包括:
基於機率的城市區域建築群落災害損傷分析和損失估計[Lin & Wang, 2016];分析過程中考慮了各建築所在場地的災害強度以及建築的結構反應的不確定性和空間相關性;
基於機率的建築群落災後功能損失評估;其中建築的功能狀態是由建築本身的損傷和建築所在場地的基本服務設施(例如水電)供給量的狀態共同決定[Zhang et al, 2016];
採用連續時間馬爾可夫過程模擬建築群落災後功能恢復過程;該模型把影響建築功能恢復過程的時間分為三部分(即建築維修前的準備時間、維修/重建時間、和基礎設施供給恢復時間)。這些時間組成本質上反映了建築維修和重建的工程實踐經驗,以及城市區域的社會經濟條件、救災資源和能力、政策規劃等客觀條件[Lin & Wang, 2017a, 2017b];
基於多目標最佳化的決策模型,服務於求解以提高城市韌性為目標的建築群落災前加固和災後重建最優策略[Lin et al., 2016; Wang & Wang, 2017];
把建築群落損傷分析與經濟社會模型相結合,作為以經濟社會韌性為指標的防災減災規劃的理論基礎。例如本課題組將建築群落災害損傷分析與社會模型相結合,實現了災害發生後返家的住戶個數的實時預測;該模型的假設為住房是否返家取決於住宅、商用建築、與學校的功能恢復,以及住戶的社會經濟條件 [Lin & Wang, 2019]。
交通網路
(基於韌性理念的減災、應急、恢複決策)
本課題組發展了一套基於風險的分階段交通網路韌性規劃決策框架,可用於災前減災優先權確定(第一階段)、災後應急資源調配(第二階段)以及長期恢復過程最佳化(第三階段)。該框架包括兩部分:(I)分階段韌性評價的指標體系。該體系包含三個網路性能指標,分別對應三個不同階段的特定決策過程[Zhang et al., 2017];(II)分階段決策模型(數學上是一個隨機多目標最佳化問題),包括了經費約束條件下災前加固項目的優先權[Zhang & Wang, 2017]、時間約束下災後緊急救援時的資源調度以及人力物力資源約束下的恢復重建的施工排序[Zhang et. al, 2017]。該決策框架已被套用于田納西州Shelby郡的公路網路。
水電網路
城市各基礎設施系統是一個功能耦合的整體,正所謂“牽一髮而動全身”,某一個系統的破壞也會造成其他一個或者多個系統的功能受到影響,甚至完全破壞。作為級聯失效的典型破壞案例,我們著重分析了城市水電網路之間的功能耦合關係[Zhang et al., 2018]。首先,我們提出了一種全新的機率分析框架來預測震後社區建築環境的功能損失,這種建築環境不僅包含建築物,同時還包括水電系統和交通網路。這一分析方法充分考慮了在一致的空間尺度上具有不同拓撲結構和災害回響特徵的物理系統之間的功能耦合,並在此基礎上提出了一個基於物理機制的、量化的、涵蓋整個社區關鍵基礎設施的功能損失評價模型。利用這一模型,可以進一步得到每個系統的抗災需求和其結構回響參數的不確定性和它們之間的空間相關性。該模型採用了基於網路流理論的方法來模擬特性各異網路之間的功能依存關係。該分析揭示並量化了災害強度的空間變化、建築物和公共基礎設施系統組件的固有脆弱性,相互依存的公共基礎網路中的級聯失效以及公共網路中剩餘供應能力的再分配,從而量化了社區建築環境災後的各項功能損失和空間分布。 為城市的防災減災以及韌性規劃決策提供了豐富的信息支持.
另一方面,研究中心在城市供水管網的抗震防災方面,展開了深入持久的研究,這不僅僅包括地下管線的地震反映試驗和理論的多重分析[Miao et al., 2016; Liu, Song & Miao, 2018]、管土相互作用分析[Liu et al., 2018],還包括以城市供水管網物理機制為基礎的管網抗震功能分析(繆惠全 and 李傑, 2018)和抗震可靠性分析[Miao, Liu & Li, 2018],從而為城市供水管網的抗震分析奠定了堅實的基礎。
系統耦合
本課題組提出了一種基於機率的城市各基礎設施系統(建築群落、水網、電網、和交通網路)協同分析框架[Zhang et al., 2018]。這個框架獲得城市區域內不同拓撲結構和災害反應特徵的物理系統的功能分析;提供了一套基於物理的功能損失量化和恢復預測模型。它的優勢具體體現在(1)分析過程中考慮了災害強度和結構回響的隨機性和空間相關性;(2)採用“系統的系統”的方法研究城市建築群落和各類基礎設施之間由於功能耦合所產生的級聯效應;(3)通過對各系統模型之間的實時信息傳遞實現同步整體恢復的量化預測和獲得最優恢復策略;(4)採用以大數據和機器學習為基礎的高效解耦算法,例如複雜相關係統的崩潰擴散過程採用網路流分析和混合整數線性規劃模型相結合的方法。
參考文獻
Lin, P., & Wang, N. (2016).Building Portfolio Fragility Functions to Support Scalable Community Resilience Assessment.Sustainable and Resilient Infrastructure,1(3-4), 108-122.
Lin, P., & Wang, N. (2017). Stochastic Post-Disaster Functionality Recovery of Community Building Portfolios II: Application.Structural Safety,69, 106-117.
Lin, P., & Wang, N. (2017). Stochastic Post-Disaster Functionality Recovery of Community Building Portfolios I: Modeling.Structural Safety,69, 96-105.
Lin, P. & Wang, N. (2018).Modeling Building Portfolio Recovery to support Community Resilience PlanninginSustainable and Resilient Infrastructure, published by Routledge, London.
如果將我們所研究的城市各個系統看做一個完整的系統,那么城市系統所承受的災害荷載將是系統的輸入。正確的系統輸入是獲得正確係統輸出的基礎和前提條件。 因此,在城市尺度上,建立科學合理的城市尺度災場模型是一個關鍵的科學問題。
城市尺度洪水模型
基於風險的城市韌性規劃需要基於物理的災害建模技術,用於提供可直接支撐城市和區域尺度上的基礎設施系統韌性評價的、量化的、複雜災場特徵描述。通過與位於俄克拉荷馬大學的美國國家氣象中心合作,本課題組發展了一個可捕捉雨洪需求參數(水深、流速、洪水持續時間等)時空變異性及參數之間相關性的水文模型[Xue et al., 2017, a&b]。這些參數信息可直接用於描述複雜災場荷載的空間分布和時程變化,是針對颱風災害的城市基礎設施韌性評價的重要輸入[Dresback et al., 2017, 2019]。
城市尺度地震動場
目前,地震危險性分析方法可以主要歸類為情景地震分析方法和隨機地震分析方法兩大類。由此,其隨機地震動場則可以分為情景地震動場和隨機地震動場兩大類。地震動的不確定性,則可以分為地震自身的不確定性(如震源、傳播途徑和局部場地)和研究模型的不確定性(即認知的不確定性)兩大方面。從具體的模擬技術來說,則有情景模擬(Atkinson & Boore, 1995, 2006)、非條件模擬(Zanardo et al., 2002)、條件模擬(Harichandran & Vanmarcke, 1986)三大類。
由於地震動場模型涉及到的一個重要方面是空間範圍內不同點之間相關性,因此,地震動場的相干函式就成為一個重要的研究點。基於物理機制的工程場地地震動相干函式模型(繆惠全 &李傑, 2018)以基於物理機制的空間地震動場模型 (王鼎 &李傑, 2012)為基礎,充分考慮了震源、傳播途徑和局部場地的隨機性,並利用機率密度演化方法(PDEM)求解了這一相干函式。通過與經驗相干函式模型Harichandran-Vanmarcke模型和Hao模型的對比,驗證了這一模型的合理性。 相比於傳統的經驗或者半經驗的相干函式模型,此模型為理解地震動場相干特性提供了新視角,即根據各種不同物理因素和地震波傳播的物理機制確定地震動場的相干性,從而為分析和確定工程場地地震動場的相干性提供了一類新方法。
參考文獻
Atkinson, G. M. & Boore, D. M. (1995). Ground-motion relations for Eastern North America. Bulletin of the Seismological Society of America, 85(1), pp. 17–30.
Atkinson, G. M. & Boore, D. M. (2006). Earthquake ground-motion prediction equations for Eastern North America. Bulletin of the Seismological Society of America, 96(6), pp. 2181–2205.
Dresback, K.M., Xue, X., Xu, J., Wang, N, Kolar, R.L. & Geoghegan, K.M. (2017).A Coupled Model System for Hurricanes, Storm Surge and Coastal Flooding to Support Community Resilience Planning under Climate Change. In12th International Conference on Structural Safety & Reliability(ICOSSAR2017), Vienna, Austria, August 2017.
Dresback, K.M., Szpilka, C.M., Xue X., Arrietta, H.V., Wang, N, Kolar, R.L., Xu, J., & Geoghegan, K.M., (2019). Steps Towards Modeling Community Resilience Under Climate Change: Hazard Model Development. Natural Hazards.in review.
Harichandran, R. S. & Vanmarcke, E. H. (1986). Stochastic variation of earthquake ground motion in space and time. Journal of Engineering Mechanics, 112(2), pp. 154–174.
Xue, X., Wang, N., Ellingwood, B.R. & Zhang, K. (2017a).The Impact of Climate Change on Riverine Flooding at a Community Scale. In12th International Conference on Structural Safety & Reliability (ICOSSAR2017), Vienna, Austria, August 2017.
Xue, X., Wang, N., Ellingwood, B.R., & Zhang, K. (2017b).The role of climate change on resilience of communities vulnerable to riverine floodinginClimate Change and its Impact: Risks and Inequalities, published by Springer, New York.
Zanardo, G., Hao, H. & Modena, C. (2002). Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion. Earthquake Engineering and Structural Dynamics, 31(6), pp. 1325–1345.
繆惠全 & 李傑 (2018). 基於物理機制的工程場地地震動相干函式模型. 中國科學, 48(2), pp. 209–216.
王鼎 & 李傑 (2012). 工程場地地震動隨機場的物理模型. 中國科學:技術科學, 42(7), pp. 798–807.
新建建築
目前,建築結構的設計性能目標還停留在保障極端災害下生命安全,不考慮城市災後的功能損失和恢復,對城市的災害韌性提升和可持續發展造成重大障礙。 一般來說,每個城市每年都有大量新建建築,但如何使得新建建築在未來災害事件下的性能表現與城市作為一個整體的韌性目標相協調呢?
本課題組對此進行了一系列的探索。首先,理論上來說,城市作為一個整體,其災害韌性是由諸多子功能單元集(如住宅建築,商業建築,交通網路,水電網路等)的韌性性能所決定的,類似的,各子功能單元集(如住宅建築)的災害韌性又是由所對應的結構單體(如單體住宅)的性能所決定。從理論上來說,單體建築的最低性能目標可以通過層層分解整個城市的韌性目標來確定。本課題組將單體建築在災害下的可靠度和建築群落作為一個整體的性能目標從機率上聯繫了起來(Linet al.,2016),以此為基礎,通過反向最佳化算法,得到了木結構住宅建築在地震(Wang & Wang, 2019) 和龍捲風(Wang et al., 2017)災害下的、通過易損性曲線來表示的最低性能標準。本研究得到的建築最低性能標準可以用來指導新建建築的結構設計,使得城市最終達到它預定的韌性目標,並且有望為編寫下一代結構設計規範提供理論基礎。
災前加固
在災前對基礎設施進行加固能有效減輕城市在自然災害下的脆弱性。本課題組從系統整體的角度發展了一套可以指導城市制訂建築群落尺度的災前加固方案的決策框架,使城市在災害下可以達到預先設定的韌性性能目標。在加固中對有限資源的分配具有高度的複雜性和得失的權衡。本課題組針對城市在地震(Zhang & Nicholson, 2016)和龍捲風(Wang & Wang, 2017)災害下的基礎設施加固決策開發了一套多目標最佳化算法。該決策算法可以給出在有限預算的限制下,針對直接經濟損失和及時人口流失之間的多重最佳化結果。本決策框架可以輔助城市決策者制訂城市規劃方案和設立災前加固的政策性激勵,最終幫助城市基礎設施朝著更韌性的方向發展。
災後重建(全壽命維護)
近幾年世界範圍內發生的數次災難性自然災害及其對於城市基礎設施、經濟發展和社會結構的嚴重破壞,引出了一個全世界的城市都在面臨的亟待解決的問題 ——如何更好的重建在自然災害中嚴重破壞的城市基礎設施。受到最佳化重建(BuildingBackBetter, BBB)思想的啟發,本課題組提出了一系列基於建築群落全壽命分析的災後重建決策框架。
1.橋樑網路(基於全壽命費用的馬爾科夫決策)
本課題組提出了一個基於全壽命費用的連續時間馬爾科夫決策過程模型,用於確定橋樑網路災前加固和災後修復時的目標性能水準[Tao & Wang, 2019]。該模型由四部分組成:(1)橋樑抗震性能狀態量化。類比於美國ASCE規範對建築結構的規定,提出將橋樑10%倒塌機率對應的地震動譜加速度定義為橋樑抗震能力,並將其離散化。(2)機率地震危險性分析。基於震源-傳播途徑-場地全過程分析,並結合蒙特卡洛模擬,估算橋樑的狀態轉移機率。(3)交通流分析。通過分析橋樑破壞導致的交通堵塞,估算震後的間接經濟損失。(4)動態規劃求解。將決策最佳化問題分解為一系列簡單子問題,並採用策略疊代算法進行求解。與其它全壽命決策模型相比,該模型的顯著特點是決策結果反映了交通網路拓撲結構對橋樑重要性以及橋樑目標性能之間的相關性的影響。
2.建築群落(基於全壽命分析的災後重建決策)
我們將全壽命分析(life-cycle analysis, LCA)從單體建築拓展到了建築群落,這依賴於兩個關鍵概念,即建築群落生命周期(BPLC)和建築群落更新速率(BPRR)。有了這兩個關鍵的信息,我們提出了兩個衡量建築群落的整體性指標: 期望建築群落全壽命費用(EBPLCC)和期望建築群落累計前景價值(EBPCPV),後者可以反應典型的風險規避型決策者對於風險損失的主觀感受(Wang & Wang, 2019)。值得注意的是,在期望建築群落累計前景價值的計算中,根據決策者的風險偏好,低機率-高損失事件的影響被放大,從這個意義上來說,它可以統一全壽命分析和韌性要求。我們對建築群落在地震災害下的全壽命分析作了詳細展開討論,考慮了包括特徵地震和非特徵地震在發生間隔時間特徵上的差異 (Wang et al., 2019a)。第二步,基於上述建築群落全壽命分析,我們提出了一套可以支持建築群落災後重建的決策框架。為實現建築群落和城市在極端災害事件下的損失控制和快速功能恢復,我們引入了建築群落的韌性性能目標。使用遺傳算法,該決策框架可以找到在滿足韌性性能目標前提下的最優重建決策,以達到全壽命的費用或者累計前景價值的最優 (Wang et al., 2019b)。本研究提出的決策框架可以直接套用於地震災後的重建規劃,並最終使得城市最高效地達到預定的韌性目標。
參考文獻
Lin, P., Wang, N., & Ellingwood, B. R. (2016).A Risk De-Aggregation Framework That Relates Community Resilience Goals to Building Performance Objectives.Sustainable and Resilient Infrastructure,1(1-2), 1-13.
Maloney, T., Ellingwood, B., Mahmoud, H., Wang, N., Wang, Y., & Lin, P.(2018). Performance and Risk to Light-framed Wood Residential Buildings Subjected to Tornadoes.Structural Safety,70, 35-47.
Tao, W., Wang N. (2019). A Novel Markovian Framework for Optimum Maintenance of Deteriorating Bridges in Earthquake-prone Areas. 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP13), May 26-30. Seoul, S. Korea.
Wang, Y., Wang N. (2017). Retrofitting Building Portfolios to Achieve Community Resilience Goals under Tornado Hazard. ICOSSAR 2017. Vienna, Austria.
Wang, Y., Wang, N., Lin, P., Ellingwood, B., Mahmoud, H., & Maloney, T. (2018). De-aggregation of community resilience goals to obtain minimum performance objectives for buildings under tornado hazards. Structural Safety, 70, 82-92.
Wang, Y., Wang N. (2019a). Resilience-based Performance Objectives for Residential Buildings Subject to Seismic Hazard. 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP13), May 26-30. Seoul, S. Korea.
Wang, Y., Wang N. (2019b). Post-hazard Reconstruction of Building Portfolio Based on Portfolio Life-cycle Analysis. 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP13), May 26-30. Seoul, S. Korea.
Wang, Y., Wang N. Simonen, K. (2019a). Scale Life-Cycle Analysis (LCA) to Community Building Portfolios to Support Building Back Better I: Building Portfolio LCA. Structural Safety. In review.
Wang, Y., Wang N. Simonen, K. (2019b). Scale Life-Cycle Analysis (LCA) to Community Building Portfolios to Support Building Back Better II: BBB Decision Formulation. Structural Safety. In review.
Zhang, W. & Nicholson, C. (2016) A multi-objective optimization model for retrofit strategies to mitigate direct economic loss and population dislocation, Sustainable and Resilient Infrastructure, 1:3-4, 123-136.
期刊論文
Wang, Y., Wang, N.*, Lin, P., Ellingwood, B., & Mahmoud, H. (2020). Life-Cycle Analysis (LCA) to Restore Community Building Portfolios by Building Back Better I: Building Portfolio LCA.
Wang, Y., Wang, N.*, Lin, P., Ellingwood, B., Mahmoud, H. (2020). Life-Cycle Analysis (LCA) to Restore Community Building Portfolios by Building Back Better II: Decision Formulation.
Zhang, W., Lin, P., Wang, N., Nicholson, C.D. &Xue, X. (2018).Probabilistic Prediction of Post-disaster Functionality Loss of Community Building Inventories Considering Utility Disruptions.ASCE Journal of Structural Engineering, Special Issue on Structural Design and Robustness for Community Resilience to Natural Hazards.144 (4), 04018015.
Zhang, W., Wang, N., Nicholson, C.D. and Hadikhan Tehrani M. (2017).A Stage-wise Decision Framework for Transportation Network Resilience Planning and Recovery.Sustainable and Resilient Infrastructure,In review
Lin, P. and Wang, N. (2017).Stochastic Post-Disaster Functionality Recovery of Community Building Portfolios II: Application.Structural Safety, 69C, 106-117.
Lin, P. and Wang, N. (2017).Stochastic Post-Disaster Functionality Recovery of Community Building Portfolios I: Modeling.Structural Safety,69C, 96-105.
McAllister, T., Wang, N. and Ellingwood, B.R. (2018). Risk-Informed Mean Recurrence Intervals for Updated Wind Maps in ASCE 7-16.ASCE Journal of Structural Engineering,144(5), 06018001.
Zhang, W. & Wang, N. (2017).Bridge Network Maintenance Prioritization under Budget Constraint.Structural Safety,67,96–104
Wang, Y., Wang, N., Lin, P., Ellingwood, B., Mahmoud, H., and Maloney, T. (2017).De-aggregation of Community Resilience Goals to Obtain Minimum Performance Objectives for Buildings under Tornado Hazards. Structural Safety.
Maloney, T., Ellingwood, B., Mahmoud, H., Wang, N., Wang, Y., Lin, P. (2017).Performance and Risk to Light-framed Wood Residential Buildings Subjected to Tornados.Structural Safety.
Feng, K., Wang, N., Li, Q.and Lin, P. (2017)Enhancing Resilience of Building Portfolios Considering the Functional Interdependence among Community Sectors.StructuralSafety. 66,118–126.
Zhang, W., Wang, N., & Nicholson, C. (2017).Resilience-based Post-Disaster Recovery Strategies for Road-bridge Networks.Structure and Infrastructure Engineering, 13(11), 1404-1413.
Lin, P., & Wang, N. (2016).Building Portfolio Fragility Functions to Support Scalable Community Resilience Assessment.Sustainable and Resilient Infrastructure,1(3-4), 108-122. [PDF]
Xue, X., Wang, N., Ellingwood, B.R. & Zhang, Ke. (2017). Flood Hazard Modeling to Support Community Resilience Planning for an Evolving Climate.Natural Hazards Review,In Review
Ellingwood, B. R., Cutler, H., Gardoni, P., Peacock, W. G., van de Lindt, J. W., & Wang, N. (2016).The Centerville Virtual Community: A Fully Integrated Decision Model of Interacting Physical and Social Infrastructure Systems.Sustainable and Resilient Infrastructure,1(3-4), 95-107.
Lin, P., Wang, N., & Ellingwood, B. R. (2016).A Risk De-Aggregation Framework That Relates Community Resilience Goals to Building Performance Objectives.Sustainable and Resilient Infrastructure,1(1-2), 1-13. [PDF]
Zhang, W., & Wang, N. (2016).Resilience-based Risk Mitigation for Road Networks.Structural Safety,62, 57-65.[PDF]
Wang, N. and B.R. Ellingwood (2015).Limit State Design Criteria for FRP Strengthening of RC Bridge Components,Structural Safety, 56, 1–8.
Wang, N., & Ellingwood, B. R. (2014).Estimating Nominal Strength of Built-up CFRP Laminates From Standardized Specimen Tests.Structural Safety,47, 24-28.
Wang, N., & Zarghamee, M. S. (2013).Evaluating Fitness-for-service of Corroded Metal Pipelines: Structural Reliability Bases.Journal of Pipeline Systems Engineering and Practice,5(1), 04013012.
Wang, N., O’Malley, C., Ellingwood, B. R., & Zureick, A. H. (2011).Bridge Rating Using System Reliability Assessment. I: Assessment and Verification by Load Testing.Journal of Bridge Engineering,16(6), 854-862.
Wang, N., Ellingwood, B. R., & Zureick, A. H. (2011).Bridge Rating Using System Reliability Assessment. II: Improvements to Bridge Rating Practices.Journal of Bridge Engineering,16(6), 863-871.
Wang, N., Ellingwood, B. R., & Zureick, A. H. (2010).Reliability-based Evaluation of Flexural Members Strengthened with Externally Bonded Fiber-reinforced Polymer Composites.Journal of Structural Engineering,136(9), 1151-1160.
會議論文
Xue, X., Wang, N., Ellingwood, B.R. & Zhang, K. (2017).The Impact of Climate Change on Riverine Flooding at a Community Scale. In12th International Conference on Structural Safety & Reliability (ICOSSAR2017), Vienna, Austria, August 2017.
Wang, Y.&Wang, N. (2017).A Decision Framework to Achieve Building Portfolio Resilience Goals under Tornado Hazard. In12th International Conference on Structural Safety & Reliability (ICOSSAR2017), Vienna, Austria, August 2017.
Zhang, W., Wang, N., Nicholson, C. & Tehrani, M.H. (2017).Stage-wised Resilience Planning for Transportation Networks. In12th International Conference on Structural Safety & Reliability(ICOSSAR2017), Vienna, Austria, August 2017.
Lin, P.& Wang, N. (2017).A Simulation-based Model for Post-Disaster Functionality Recovery of Community Building Portfolios. In12th International Conference on Structural Safety & Reliability(ICOSSAR2017), Vienna, Austria, August 2017.
Kendra M. D., Xue, X., Xu, J., Wang, N, Kolar, R.L. and Geoghegan, K.M. (2017).A Coupled Model System for Hurricanes, Storm Surge and Coastal Flooding to Support Community Resilience Planning under Climate Change. In12th International Conference on Structural Safety & Reliability(ICOSSAR2017), Vienna, Austria, August 2017.
Ellingwood, B.R.*, Wang, N., Harris, J.R. and McAllister, T.P. (2017).The Role of Performance-based Engineering in Achieving Community Resilience: A First Step. Inthe 2nd International Workshop on Modeling of Physical, Economic and Social Systems for Resilience Assessment, Italy. December 2017.
Cutler, H., Nicholson, C., Wang, N, and Zahran, S. (2016).Merging Economic and Civil Engineering Models to Estimate the Impact of Earthquakes. In55th Annual Meeting of the Southern Regional Science Association, Washington, D.C. 2016.
Van de Lindt, J.W., Ellingwood, B. R., Wang, N., Mahmoud, H., Koliou, M. (2016).The Role of Structural Robustness in Risk-Informed Community Resilience Planning. In85th Structural Engineers Association of California (SEAOC) Convention, Maui, 2016.
Ellingwood, B.R., van de Lindt, J.W., Cox, D., Wang, N., Cutler, H., Peacock, W. and Gardoni, P. (2016)Introducing the NIST center of excellence for risk-based community resilience planning: Part II: Center of excellence community resilience testbeds, climate change and upcoming center research activities. InWorld 1st International Workshop on Resilience, Torino, Italy, 2016.
Zhang, W., Cao, M. and Wang, N (2015).Travel Time Reliability Based Bridge Network Maintenance Optimization under Budget Constraint. InThe 12th International Conference on Applications of Statistics and Probability in Civil Engineering-(ICASP12), Canada, July 12-15, 2015.
Wang, N. and Ellingwood, B.R(2015).De-aggregating Community Resilience Objectives to Achieve Building Performance Goals.The 12th International Conference on Applications of Statistics and Probability in Civil Engineering,ICASP12, Canada, July 12-15, 2015.
Wang, N., Ellingwood, B.R. and Zureick,A.H. (2013).Reliability-based Framework for Improving Highway Bridge Capacity Ratings.International Conference on Structural Safety and Reliability (ICOSSAR), New York, USA, June 2013.
Wang, N., & Zarghamee, M. S. (2012).LRFD Approach to CFRP Renewal of Prestressed Concrete Cylinder Pipes. InPipelines 2012: Innovations in Design, Construction, Operations, and Maintenance, Doing More with Less(pp. 481-493).
Wang, N., & Zarghamee, M. S. (2012).Reliability-based Framework for Determination of Fitness for Service of Corroding Metal Pipes. InStructures Congress 2012(pp. 1247-1257).Chicago, USA, March 2012.
Wang, N., Ellingwood, B. R., & Zureick, A. H. (2011).Improved Bridge Capacity Rating Methods Based on System Reliability Assessment.Applications of Statistics and Probability in Civil Engineering, 171.Zurich, Switzerland, August 2011.
Wang, N., Ellingwood,B.R. and Zureick,A. H.(2010).Reliability-Based Framework for Achieving Realistic and Time-Dependent Highway Bridge Capacity Ratings.International Symposium on Reliability Engineering and Risk Management (ISRERM), Shanghai, China, 2010.
專著與章節
Lin, P. and Wang, N*. (2018).Modeling Building Portfolio Recovery to support Community Resilience PlanninginSustainable and Resilient Infrastructure, published by Routledge, London (in review).
Ellingwood, B.R.*, Wang, N., Harris, J.R. and McAllister, T.P. (2018).Performance-based Design to achieve Community ResilienceinSustainable and Resilient Infrastructure, published by Routledge, London (in review).
Xue, X., Wang, N.*, Ellingwood, B.R., and Zhang, K. (2017).The role of climate change on resilience of communities vulnerable to riverine floodinginClimate Change and its Impact: Risks and Inequalities, published by Springer, New York (in press).
技術報告
Zarghamee, M.S., M. Engindeniz, and N. Wang. (2012).CFRP Renewal of Prestressed Concrete Cylinder Pipes. Project No. 04352, published by Water Research Foundation.
Ellingwood, B.R., A.H. Zureick, N. Wang, and C. O’Malley. (2009).Condition Assessment of Existing Bridge Structures, Task 4 – Development of Guidelines for Condition Assessment, Evaluation, and Rating of Bridges in Georgia. GDOT Project RP 05-01.
Wang, N., B.R. Ellingwood, A.H. Zureick, and C. O’Malley. (2008).Condition Assessment of Existing Bridge Structures, Task 1 – State of the Art of Bridge Condition Assessment. GDOT Project RP 05-01.
O’Malley, C., N. Wang, B.R. Ellingwood, and A. Zureick. (2007).Condition Assessment of Existing Bridge Structures: Report of Tasks 2&3 – Bridge Load Testing Program. GDOT Project RP 05-01.
A.國際學術活動重要職務
國際大會組織者(4次):
a.Mini-symposium on“Civil Infrastructure Condition Assessment”, International Conference on Structural Safety and Reliability (ICOSSAR),New York City,2013(2013 ICOSSAR 專題研討會)
主席:王乃玉 博士(OU)& A. Mitsuyoshi 博士 (早稻田大學)
b.Mini-symposium on “Building Inventories and Civil Infrastructure Systems” ,International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP),Vancouver,Canada, 2015 (2015 ICASP 專題研討會)
主席:王乃玉 博士(OU)& Bruce Ellingwood 博士 (Colorado State Univ.)
c.Mini-symposium on “The Role of Climate Change on Hurricanes,Storm Surges and Coastal Floods”,International Conference on Structural Safety and Reliability (ICOSSAR),Vienna,Austria, 2017(2017 ICOSSAR 專題研討會)
主席: Paolo Gardoni 博士 (UIUC) & 王乃玉 博士(OU)
d.Organized Session on “Community Recovery Modeling”, Structures Congress, Fort Worth, TX, USA 2018. (2018 Structures Congress 專題研討會)
主席: 王乃玉 博士(OU) Paolo Bocchini 博士 (Lehigh University)
B.國際學術會議作大會報告、特邀報告情況 (口頭報告)
P1.“The Impact of Climate Change on Riverine Flooding at a Community Scale.” Invited Talk at the12th International Conference on Structural Safety & Reliability (ICOSSAR2017), Vienna, Austria, August 2017.
P2.“A Coupled Model System for Hurricanes, Storm Surge and Coastal Flooding to Support Community Resilience Planning under Climate Change.” Invited Talk at the12th International Conference on Structural Safety & Reliability(ICOSSAR2017), Vienna, Austria, August 2017.
P3.“Modeling of Recovery of Community Physical Systems from a Natural Disaster”. Invited Talk at the 2nd NIST COE - Tsinghua Workshop on Resilient Civil Infrastructure System, Tsinghua University, Beijing, China. June, 2017
P4.“Modeling and Assessing Resilience of Community Built Environment”. Invited Talk at Zhejiang University, Hangzhou, China. May, 2017
P5.“Modeling Recovery of Community Building Portfolios”. Semi-Annual Meeting of the NIST-funded Center for Risk-based Community Resilience Planning, Fort Collins, Colorado, USA. April, 2017
P6. “Stage-Wise Resilience Planning for Community Transportation Networks”. Semi-Annual Meeting of the NIST-funded Center for Risk-based Community Resilience Planning, Gaithersburg, Maryland, USA. November, 2016
P7.“Resilience Planning of Roadway Networks” Invited Talk at the 1st NIST COE - Tsinghua Workshop on Resilient Civil Infrastructure Systems, Tsinghua University, Beijing, China. June, 2016
P8.“Resilience Assessment of Community Building Portfolios”, Invited Talk at Tongji University, Shanghai, China. June, 2016
P9.“The Impact of Climate Change on Riverine Flooding”. Invited talk, co-presented at the Workshop on Climate Change and its Impacts: Risks and Inequalities, University of Illinois at Urbana-Champaign, IL, USA. March, 2016
P10.“Toward a Resilient Built Environment”. Invited Talk at Rice University, USA. April, 2016.
P11.“Resilience Planning for Transportation Networks” Invited Talk at Oregon State University, USA. May, 2015.
P12.“Linking Community Resilience Goals to Performance Objectives of Individual Facilities.” Presentation at the Symposium on the Reliability of Engineering Systems (SRES), Hangzhou, China, October 15-17, 2015.
P13.“De-aggregating Community Resilience Objectives to Achieve Building Performance Goals.” Invited Talk at the International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Canada, July 12-15, 2015.
P14.“Travel Time Reliability Based Bridge Network Maintenance Optimization under Budget Constraint.” Presentation at the International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Canada, July 12-15, 2015.
P15.“Condition Assessment, Renewal and Resilience of Civil Infrastructure.” Invited talk at the Workshop on Risk and Uncertainty, University of Liverpool, UK, November 7-8, 2013
P16.“Reliability-based Framework for Improving Highway Bridge Capacity Ratings.” Invited talk at the International Conference on Structural Safety and Reliability (ICOSSAR2013), New York, USA. June 2013.
P17.“LRFD Approach for PCCP Renewal using CFRP Composite.” Presentation at the ASCE Pipeline Conference, Miami, USA. August 2012.
P18.“Improved Bridge Capacity Rating Methods Based on System Reliability Assessment.” Presentation at the International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP), Zurich, Switzerland, August 2011.
P19.“Fitness-for-Service Evaluation of Corroded Metallic Pipes.” Presentation at the ASCE Structures Congress, Chicago, USA, March 2012. (Awarded “Best of Best” Presentation)
P20.“Reliability-based Framework for Achieving Realistic and Time-dependent Highway Bridge Capacity Ratings.” International Symposium on Reliability Engineering and Risk Management (ISRERM), Shanghai, China, 2010
參加工作以來主持和參加的縱向科研項目
2015-2020 美國標準局資助大型研發項目 2000萬美元(237萬美元) 主持(PI)
2015-2019 美國自然科學基金委科研項目 120萬美元(40萬美元) 主持(PI)
2011-2013 美國俄克拉荷馬州交通部研發項目 17萬美元(17萬美元) 主持(PI)
2014-2016 美國水資源基金委科研項目 55萬美元(15萬美元) 參與(責任研究員)
2005-2010 美國喬治亞州交通部研發項目 77萬美元(35萬美元) 參與(責任研究員)