定義
物理磁阻效應是指某些金屬或半導體的電阻值隨外加磁場變化而變化的現象。金屬或半導體的載流子在磁場中運動時,由於受到電磁場的變化產生的洛倫茲力作用,產生了磁阻效應。
分類
若外加
磁場與外加電場垂直,稱為橫向磁阻效應;若外加磁場與外加電場平行,稱為縱向磁阻效應。一般情況下,
載流子的
有效質量的馳豫時時間與方向無關,則縱向磁感強度不引起載流子偏移,因而無縱向磁阻效應。
磁阻效應主要分為:常磁阻,巨磁阻,超巨磁阻,異向磁阻,穿隧磁阻效應等
常磁阻(OrdinaryMagnetoresistance,OMR)
對所有非磁性金屬而言,由於在磁場中受到洛倫茲力的影響,傳導電子在行進中會偏折,使得路徑變成沿曲線前進,如此將使電子行進路徑長度增加,使電子碰撞機率增大,進而增加材料的電阻。磁阻效應最初於1856年由威廉·湯姆森,即後來的開爾文爵士發現,但是在一般材料中,電阻的變化通常小於5%,這樣的效應後來被稱為“常磁阻”(ordinarymagnetoresistance,OMR)。
巨磁阻(GiantMagnetoresistance,GMR)
所謂巨磁阻效應,是指磁性材料的電阻率在有外磁場作用時較之無外磁場作用時存在巨大變化的現象。巨磁阻是一種量子力學效應,它產生於層狀的磁性薄膜結構。這種結構是由鐵磁材料和非鐵磁材料薄層交替疊合而成。當鐵磁層的磁矩相互平行時,載流子與自旋有關的散射最小,材料有最小的電阻。當鐵磁層的磁矩為反平行時,與自旋有關的散射最強,材料的電阻最大。
超巨磁阻(ColossalMagnetoresistance,CMR)
超巨磁阻效應(也稱龐磁阻效應)存在於具有鈣鈦礦(Perovskite)ABO3的陶瓷氧化物中。其磁阻變化隨著外加磁場變化而有數個數量級的變化。其產生的機制與巨磁阻效應(GMR)不同,而且往往大上許多,所以被稱為“超巨磁阻”。 如同巨磁阻效應(GMR),超巨磁阻材料亦被認為可套用於高容量磁性儲存裝置的讀寫頭。不過,由於其相變溫度較低,不像巨磁阻材料可在室溫下展現其特性,因此離實際套用尚需一些努力。
異向磁阻(Anisotropicmagnetoresistance,AMR)
有些材料中磁阻的變化,與磁場和電流間夾角有關,稱為異向性磁阻效應。此原因是與材料中s軌域電子與d軌域電子散射的各向異性有關。由於異向磁阻的特性,可用來精確測量磁場。
穿隧磁阻效應(Tunnel Magnetoresistance,TMR)
穿隧磁阻效應是指在鐵磁-絕緣體薄膜(約1納米)-鐵磁材料中,其穿隧電阻大小隨兩邊鐵磁材料相對方向變化的效應。此效應首先於1975年由Michel Julliere在鐵磁材料(Fe)與絕緣體材料(Ge)發現;室溫穿隧磁阻效應則於1995年,由Terunobu Miyazaki與Moodera分別發現。此效應更是磁性隨機存取記憶體與硬碟中的磁性讀寫頭(readsensors)的科學基礎。
歷史
材料的電阻會因為外加磁場而增加或減少,則稱電阻的變化稱為磁阻(MR)。磁阻效應是1857年由英國物理學家
威廉·湯姆森發現的,它在金屬里可以忽略,在
半導體中則可能由小到中等。從一般磁阻開始,磁阻發展經歷了
巨磁阻(GMR)、龐磁阻(CMR)、穿隧磁阻(TMR)、直衝磁阻(BMR)和異常磁阻(EMR)。
套用
磁阻器件由於
靈敏度高、抗干擾能力強等優點在工業、交通、儀器儀表、醫療器械、探礦等領域得到廣泛套用,如數字式羅盤、交通車輛檢測、導航系統、偽鈔檢別、位置測量等。
其中最典型的
銻化銦(InSb)
感測器是一種價格低廉、
靈敏度高的磁阻器件磁電阻,有著十分重要的套用價值。