簡介
採用絕緣性能好的電介質來消除各電子元件之間的相互影響的工藝方法稱為介質隔離技術。這種隔離方法的優點是各元件之間的漏電流和隔離區分布電容比P-N結隔離要小得多。它適於在高頻線性放大積體電路和高速數字積體電路中使用。但由於電介質的導熱性能較差,所以它在大功率積體電路中使用時,散熱能力比P-N結隔離法差。
介質損耗
電介質在外電場作用下,其內部會有發熱現象,這說明有部分電能已轉化為熱能耗散掉,電介質在電場作用下,在單位時間內因發熱而消耗的能量稱為電介質的損耗功率,或簡稱介質損耗(diclectric loss)。介質損耗是套用於交流電場中電介質的重要品質指標之一。介質損耗不但消耗了電能,而且使元件發熱影響其正常工作。如果介電損耗較大,甚至會引起介質的過熱而絕緣破壞,所以從這種意義上講,介質損耗越小越好。
形式
各種不同形式的損耗是綜合起作用的。由於介質損耗的原因是多方面的,所以介質損耗的形式也是多種多樣的。介電損耗主要有以下形式:
1)漏導損耗
實際使用中的絕緣材料都不是完善的理想的電介質,在外電場的作用下,總有一些帶電粒子會發生移動而引起微弱的電流,這種微小電流稱為漏導電流,漏導電流流經介質時使介質發熱而損耗了電能。這種因電導而引起的介質損耗稱為“漏導損耗”。由於實阿的電介質總存在一些缺陷,或多或少存在一些帶電粒子或空位,因此介質不論在直流電場或交變電場作用下都會發生漏導損耗。
2)極化損耗
在介質發生緩慢極化時(鬆弛極化、空間電荷極化等),帶電粒子在電場力的影響下因克服熱運動而引起的能量損耗。
一些介質在電場極化時也會產生損耗,這種損耗一般稱極化損耗。位移極化從建立極化到其穩定所需時間很短(約為10-16~10-12s),這在無線電頻率(5×1012Hz 以下)範圍均可認為是極短的,因此基本上不消耗能量。其他緩慢極化(例如鬆弛極化、空間電荷極化等)在外電場作用下,需經過較長時間(10-10s或更長)才達到穩定狀態,因此會引起能量的損耗。
若外加頻率較低,介質中所有的極化都能完全跟上外電場變化,則不產生極化損耗。若外加頻率較高時,介質中的極化跟不上外電場變化,於是產生極化損耗。
3)電離損耗
電離損耗(又稱游離損耗)是由氣體引起的,含有氣孔的固體介質在外加電場強度超過氣孔氣體電離所需要的電場強度時,由於氣體的電離吸收能量而造成指耗,這種損耗稱為電離損耗。
4)結構損耗
在高頻電場和低溫下,有一類與介質內鄰結構的緊密度密切相關的介質損耗稱為結構損耗。這類損耗與溫度關係不大,耗功隨頻率升高而增大。
試驗表明結構緊密的晶體成玻璃體的結構損耗都很小,但是當某此原因(如雜質的摻入、試樣經
淬火急冷的熱處理等)使它的內部結構鬆散後。其結構耗就會大大升高。
5)巨觀結構不均勾性的介質損耗
工程介質材料大多數是不均勻介質。例如
陶瓷材料就是如此,它通常包含有晶相、玻璃相和氣相,各相在介質中是統計分布口。由於各相的介電性不同,有可能在兩相間積聚了較多的自由電荷使介質的電場分布不均勻,造成局部有較高的電場強度而引起了較高的損耗。但作為電介質整體來看,整個電介質的介質損耗必然介於損耗最大的一相和損耗最小的一相之間。