消失的基頻

消失的基頻(missingfundamental)是心理聲學(psychoacoustics)領域常被談論的現象。

簡介,音高判斷,自相關函式法,頻譜觀察法,實際套用,電話,管風琴,音響系統,參考資料,

簡介

周期訊號的音高即為訊號的基頻,但基頻訊號的強度大小卻不一定大過泛音強度大小,有時基頻訊號的強度大小甚至為零,這種情形即為消失的基頻。在日常生活中,一般的樂器的聲音均是由基頻與倍頻(泛音)組合而成,而基頻就是影響聲音音高的主要因素之一。然而,當我們將基頻的強度以人為得方式調整為零時,會發現被調整過後的聲音音高仍舊不變。此一現象讓音高在頻譜上的判別更加困難,但此現象也被套用於訊號處理領域。
這裡有一個網站可以讓各位聽看看一些基頻消失的例子連結
一般而言,基頻消失的情形常常發生在低音部分,但當這種情形發生後,為何我們聽到的音高是基頻的頻率而不是泛音的頻率呢?一般人會有一個迷思,認為是基頻成分的強度遠大過泛音所致,其實不然。由很多情形我們會發現基頻的強度會小於泛音,甚至是基頻的強度為零。
那究竟是什麼原因讓我們聽的到消失的基頻呢?致今其實有很多不同的說法,部分學者說是源自於耳朵中的非線性扭曲(nonlinear distortion),然而這個說法卻遭到質疑,因為有人作實驗發現當我們加入一些噪聲來讓這些扭曲消失,但受測者仍然能感受到消失的基頻。現在較為可信的說法是人類的大腦會對接收到的頻率進行數學的運算,而這個運算方法學者普遍認為是藉由自相關函式(Autocorrelation Function)來判斷音高, 但由於目前研究結果尚未找到人類聽覺神經系統中與時間延遲相關的機制,所以目前仍舊無法建立一個完整的學說。

音高判斷

自相關函式法

此方法為時域的方法
自相關函式法的計算方式如下
{\displaystyle acf\left[tau\right]=\sum _{t=0}^{n-1-tau}s\left[i\right]s\left[i+tau\right]}
其中s(i)為某一個音框的訊號而tau為時間延遲量。我們的目的即是要找出能使 acf(tau) 產生極大值的tau值,便可藉此計算出音高。 簡單來說,自相關函式便是計算一個音框 s(i), i = 0, 1, 2, …, n-1 和本身的相似度。

頻譜觀察法

此方法為頻域的方法
藉由時頻分析得到的時頻圖(spectrogram)來分析,但若基頻消失時,我們則無法在時頻圖上讀到,此種情形則比較棘手,我們則必須使用泛音來推測出基頻,可以取泛音頻率的最大公因數(greatest common divisor)。
但以上兩種方法均適用在單音音樂,若是多聲部(多樂器)的音樂則需要較複雜的算法。

實際套用

電話

一般的市內電話較難傳送頻率300Hz以下的訊號,但成年男性的聲音大多落在150Hz左右,但成年男性的聲音並不會因為經由電話傳輸過後變得不像男生或是失去磁性。這是由於我們對音高的感知並不會因為基頻消失而改變。

管風琴

管風琴為一個占空間的樂器,有時候會因為空間與成本的因素,將樂器最低的那個八度的琴鍵移除,若是要演奏那些被移除的音,則可以演奏該音的兩個的泛音,此時聆聽者即會聽到那個低音,當然這算是幻覺。

音響系統

由於音響在低頻部分的頻率回響會有一個最低的截止頻率,也就是無法輸出比此頻率還低的頻率成分,然而我們可已使用“消失的基頻”的概念產生低音,進而突破硬體設備的限制。

參考資料

  • Jan Schnupp, Israel Nelken and Andrew King (2011). Auditory Neuroscience. MIT Press.ISBN 0-262-11318-X.
  • John Clark, Colin Yallop and Janet Fletcher (2007). An Introduction to Phonetics and Phonology. Blackwell Publishing.ISBN 1-4051-3083-0.
  • Howard, David M.; Jamie Angus (2006). Acoustics and psychoacoustics. Focal Press. pp. 202.ISBN 0-240-51995-7.
  • Waves Car Audio. MaxxBass Bass Enhancement Technology

相關詞條

熱門詞條

聯絡我們