《海岸水域表面波動力學》是2009年5月1日高等教育出版社出版的圖書,作者黃虎。
基本介紹
- 中文名:海岸水域表面波動力學
- 作者:黃虎
- 原作品:Dynamics of Surface Waves in Coastal Waters
- 出版社:高等教育出版社
- 出版時間:2009年5月1日
- 頁數:236 頁
- 開本:16 開
- 裝幀:精裝
- ISBN:9787040250619
內容簡介,圖書目錄,
內容簡介
《海岸水域表面波動力學(波-流-海底相互作用)(英文)》內容簡介:Wave motion is one of the broadest scientific subjects in nature, especiallywater waves in the near-shore region which present more richness andcomplexity of variability with respect to deep-water waves. Dynamicsof Surface Waves in Coastal Waters Wave-Current-Bottom Interactionsdevelops the typical basic theories (e.g. mild-slope equation and shore-crested waves) and applications of water wave propagation with an emphasison wave-current-bottom interactions and Hamiltonian systems. In recenttimes, the interest in water wave propagation has accelerated because ofrapid developments in global coastal ocean engineering.
This book lays a new foundation for coastal ocean engineering and includesnumerous theories and concepts (generalized wave actions in particular),making it beneficial to physical oceanographers and engineers. The bookhas detailed illustrations and stimulating examples showing how the theoryworks, and up-to-date techniques, all of which make it accessible to a widevariety of readers, especially senior undergraduate and graduate studentsin fluid mechanics, coastal and ocean engineering, physical oceanographyand applied mathematics.
圖書目錄
1 Preliminaries
1.1 Water Wave Theories in Historical Perspective
1.1.1 The Mild-Slope Equations
1.1.2 The Boussinesq-Type Equations
1.2 The Governing Equations
1.3 Lagrangian Formulation
1.4 Hamiltonian Formulation
References
2 Weakly Nonlinear Water Waves Propagating over Uneven Bottoms
2.1 Modified Third-Order Evolution Equations of Liu and Dingemans
2.2 Fourth-Order Evolution Equations and Stability Analysis
2.3 Third-Order Evolution Equations for Wave-Current Interactions
References
3 Resonant Interactions Between Weakly Nonlinear Stokes Waves and Ambient Currents and Uneven Bottoms
3.1 Introduction
3.2 Governing Equations and WKBJ Perturbation Expansion
3.3 Subharmonic Resonance
3.4 Dynamical System
References
4 The Mild-Slope Equations
4.1 Introduction
4.2 Three-Dimensional Currents over Mildly Varying Topography
4.3 Two-Dimensional Currents over Rapidly Varying Topography
4.4 Three-Dimensional Currents over Rapidly Varying Topography
4.5 Two-Dimensional Currents over Generally Varying Topography
4.6 A Hierarchy for Two-Dimensional Currents over Generally Varying Topography
References
5 Linear Gravity Waves over Rigid, Porous Bottoms
5.1 Introduction
5.2 A Rapidly Varying Bottom
5.3 Generally Varying Bottom
References
6 Nonlinear Unified Equations over an Uneven Bottom
6.1 Introduction
6.2 Nonlinear Unified Equations
6.3 Explicit Special Cases
6.3.1 Generalized Nonlinear Shallow-Water Equations of Airy
6.3.2 Generalized Mild-Slope Equation
6.3.3 Stokes Wave Theory
6.3.4 Higher-Order Boussinesq-Type Equations
References
7 Generalized Mean-Flow Theory
7.1 Introduction
7.2 Governing Equations and Boundary Conditions
7.3 Averaged Equations of Motion
7.4 Generalized Wave Action Conservation Equation and Its Wave Actions
References
8 Hamiltonian Description of Stratified Wave-Current Interactions
8.1 Introduction
8.2 Two-Layer Wave-Current Interactions
8.3 n-Layer Pure Waves
8.4 n-Layer Wave-Current Interactions over Uneven Bottoms
References
9 Surface Capillary-Gravity Short-Crested Waves with a Current in Water of Finite Depth
9.1 Introduction
9.2 An Incomplete Match and Its Solution
9.3 Linear Capillary-Gravity Short-Crested Waves
9.3.1 System Formulation
9.3.2 Analytical Solutions and Kinematic and Dynamical Variables
9.3.3 Special Cases
9.4 Second-Order Capillary-Gravity Short-Crested Waves
9.5 Third-Order Gravity Short-Crested Waves
9.5.1 The System Equations and the Perturbation Method
9.5.2 Third-Order Solution
9.5.3 Special Cases
9.5.4 Short-Crested Wave Quantities
9.5.5 Short-Crested Wave Forces on Vertical Walls
9.6 Third-Order Pure Capillary-Gravity Short-Crested Waves
9.6.1 Formulation
9.6.2 Solution
9.6.3 Kinematical and Dynamical Variables
References
Appendices
A γ,μ and v in (2.1.4)
B ξ(3,1), φ3,1), A(3,2)' ηj, τj, μj, λj and Vj in Chapter 2
C λ1 and λ2 in (2.3.44)
D μj in (3.3.22)
E I23, I33, I35,136 in Chapter 5
F Coefficients in (9.4.33) and (9.4.34)
G Coefficients in (9.5.136)-(9.5.138)
H Coefficients in (9.5.139) and (9.5.140)
Subject Index