《橢圓曲線算術中的高等論題》是2010年1月1日世界圖書出版公司出版社出版的圖書。該書主要介紹了橢圓曲線的相關知識,適用於適合數學專業的研究生和相關的科研人員。
基本介紹
- 中文名:橢圓曲線算術中的高等論題
- 作者:(美)西爾弗曼
- 出版時間:2010年1月1日
- 出版社:世界圖書出版公司出版社
- 頁數:525 頁
- ISBN: 9787510004834
- 開本:24 開
- 裝幀:平裝
- 版次:第一版
- 正文語種:英語
內容簡介,圖書目錄,
內容簡介
《橢圓曲線算術中的高等論題(英文版)》內容簡介:美國哈佛大學從1977年開始,曾多次舉辦”橢圓曲線” 班,《橢圓曲線算術中的高等論題(英文版)》作者是該討論班成員之一。橢圓曲線是一個古老的數學課題,最近由於代數數論和代數幾何等現代數學的進展,使它得到了新的活力。《橢圓曲線算術中的高等論題(英文版)》是以1986年版的《橢圓曲線的算術理論》為藍本,但在知識體系上做了較大的改動形成了這不教程,講述上也更加專業,但在思想上是作者前《橢圓曲線算術中的高等論題(英文版)》的延續。包括橢圓和模型函式;復乘方法;橢圓曲線;Néron模型;復域上的橢圓曲線等內容。每章末都配有大量習題。目次:橢圓和模型函式;復乘方法;橢圓曲線;Néron模型;復域上的橢圓曲線。
圖書目錄
Preface
Computer Packages
Acknowledgments
Introduction
CHAPTER Ⅰ
Elliptic and Modular Functions
The Modular Group
The Modular Curve X(1)
Modular Functions
Uniformization and Fields of Moduli
Elliptic Functions Revisited
q-Expansions of Elliptic Functions
q-Expansions of Modular Functions
Jacobi's Product Formula for A(T)
Hecke Operators
Hecke Operators Acting on Modular Forms
L-Series Attached to Modular Forms
Exercises
CHAPTER Ⅱ
Complex Multiplication
Complex Multiplication over C
Rationality Questions
Class Field Theory —— A Brief Review
The Hilbert Class Field
The Maximal Abelian Extension
Integrality of j
Cyclotomic Class Field Theory
The Main Theorem of Complex Multiplication
The Associated GrSssencharacter
The L-Series Attached to a CM Elliptic Curve
Exercises
CHAPTER Ⅲ
Elliptic Surfaces
Elliptic Curves over Function Fields
The Weak Mordell-Weil Theorem
Elliptic Surfaces
Heights on Elliptic Curves over Unction Fields
Split Elliptic Surfaces and Sets of Bounded Height
The Mordell-Weil Theorem for Fhnction Fields
The Geometry of Algebraic Surfaces
The Geometry of Fibered Surfaces
The Geometry of Elliptic Surfaces
Heights and Divisors on Varieties
Specialization Theorems for Elliptic Surfaces
Integral Points on Elliptic Curves over Function Fields
Exercises
CHAPTER Ⅳ
The N6ron Model
Group Varieties
Schemes and S-Schemes
Group Schemes
Arithmetic Surfaces
N6ron Models
Existence of N6ron Models
Intersection Theory, Minimal Models, and Blowing-Up
The Special Fiber of a N6ron Model
Tate's Algorithm to Compute the Special Fiber
The Conductor of an Elliptic Curve
Ogg's Formula
Exercises
CHAPTER Ⅴ
Elliptic Curves over Complete Fields
Elliptic Curves over C
Elliptic Curves over R
The Tate Curve
The Tate Map Is Surjective
Elliptic Curves over p-adic Fields
Some Applications of p-adic Uniformization
Exercises
CHAPTER Ⅵ
Local Height Functions
Existence of Local Height Functions
Local Decomposition of the Canonical Height
Archimedean Absolute Values —— Explicit Formulas
Non-Archimedean Absolute Values —— Explicit Formulas
Exercises
APPENDIX A
Some Useful Tables
Bernoulli Numbers and (2k)
Fourier Coefficients of A(T) and j(T)
Elliptic Curves over Q with Complex Multiplication
Notes on Exercises
References
List of Notation
Index