基本介紹
圖書簡介
前言
作為一門傳統的專業基礎課,機械振動理論與套用可以惠及許多專業的工科大學生,翔實的內容不僅可以為將來從事具體工作打下堅實的理論基礎,還可以拓寬專業視野,激發專業嗅覺;理論與實用並重是當今學術界的主流趨勢,本書的風格同樣可以影響它的使用者;本書的使用者可以充分領略現代計算機技術在振動分析中的魅力,這種魅力同樣可以助推他們在從事振動理論與套用方面的研究時取得更大的成就。
引進原版教材雖然是吸收國外先進知識的一條捷徑,但一個不可迴避的問題是國人的英語水平而譯著就可以作到兩者兼顧。本書中文譯本的面市必將推動我國機械振動課程的教材建設。
本版保留了前幾版以儘可能簡潔的方式介紹機械振動的基本理論與套用的風格,強調計算機技術與傳統理論分析的融合,對基本原理的解釋更加詳盡,習題和例題更加豐富多彩。一些重要的變化原著作者已在前言中作了說明。
目前國內出版的關於機械振動方面的新書無論是在內容的系統與全面上,還是在實用性與計算技術的融合上,都不能與本書相比。
原著包括14章正文內容和6個附錄,適合於不同層次和學時的“機械振動”課程選用。由於振動分析中的數值積分方法(原著第11章)和有限元方法(原著第12章)的內容,在後續課程中有更詳盡的介紹,再加上篇幅的限制,所以這兩章和原著第13.11(非線性振動的數值分析方法)未作編譯。至於原著中的6個附錄(數學關係、梁和板的變形、矩陣及其運算、拉普拉斯變換對、單位制和MATLAB簡介),則只保留了拉普拉斯變換對和單位制。此外,第7章內容變化較大。一是增加了李茲法和子空間疊代法這兩節內容;二是對瑞利法和矩陣疊代法進行了改寫。這主要是基於如下考慮: 一是李茲法和子空間疊代法在利用計算機求多自由度系統的前若干階固有頻率和固有振型方面的優勢是其他方法都不能比擬的;二是原著對瑞利法和矩陣疊代法的介紹還不夠深入、系統。例如,瑞利法中並未區別瑞利第一商和第二商的概念;矩陣疊代法中,不是從討論如何求第一階固有頻率及其振型開始,再過渡到如何在此基礎上求出各高階固有頻率和高階振型。
第1章介紹振動理論的基礎知識;第2章討論有阻尼單自由度系統和無阻尼單自由度系統的自由振動;第3章討論單自由度系統在簡諧激勵下的受迫振動問題;第4章討論單自由度系統在任意激勵下的受迫振動問題;第5章討論兩自由度系統的自由振動和受迫振動問題;第6章藉助矩陣運算討論多自由度系統的振動分析方法;第7章介紹確定多自由度系統固有頻率和固有振型的近似方法如Rayleigh法、Dunkerley法和矩陣疊代法等;第8章討論彈性體包括弦、桿、軸、梁和薄膜的振動問題;第9章討論振動的控制問題;第10章介紹振動的測量與信號分析問題;第11章(對應原著第13章)介紹非線性振動問題的分析方法;第12章(對應原著第14章)介紹隨機振動問題的處理方法。
機械振動(第4版)第1~8章的部分內容可以作為本書的基本部分;第9~10章可以作為本書的拓展部分;第11, 12章可以作為本書的提高部分。指導者也完全可以根據需要選用本書的部分內容作為輔導材料。
本書第2, 4, 5, 12章和11.8~11.14節由李欣業執筆,第3章由胡竟湘執筆,第6, 8章由楊理誠執筆,第7章由鐘順執筆,第9, 10章由張明路執筆,第11.1~11.7節由李銀山執筆。
特別感謝清華大學出版社張秋玲教授,作為本書的責任編輯,她的慧眼相識才使得此譯著的出版成為可能。同時在編輯過程中,為保證譯著的質量,她與譯者進行了大量的溝通與求證。
碩士研究生楊彥龍、張華彪、楊延鵬、張麗娟和許多本科生在部分章節、習題和程式的編譯及校對方面提供了大量的幫助,在此一併致謝。
衷心感謝中國工程院院士陳予恕教授為本書作序。
限於水平,錯誤與不妥之處難免,懇請廣大同行與讀者指正。
目錄
1.1 振動的基本概念2
1.2 振動的分類4
1.3 振動分析的一般步驟6
1.4 彈簧元件8
1.5 質量或慣性元件15
1.6 阻尼元件19
1.7 簡諧運動24
1.7.1 簡諧運動的矢量表示25
1.7.2 簡諧運動的複數表示26
1.7.3 複數的代數運算27
1.7.4 簡諧函式的運算27
1.7.5 定義和術語30
1.8 諧波分析32
1.8.1 傅立葉級數展開33
1.8.2 傅立葉級數的複數形式34
1.8.3 頻譜34
1.8.4 時域表示法與頻域表示法35
1.8.5 奇函式和偶函式35
1.8.6 半區間展開37
1.8.7 係數的數字計算37
1.9 利用MATLAB求解的例子41
1.10 C++程式45
1.11 Fortran程式47
1.12 振動方面的參考文獻48
參考文獻48
思考題51
習題54
設計題目67機械振動(第4版)目錄第2章 單自由度系統的自由振動71
2.1 引言71
2.2 無阻尼平動系統的自由振動73
2.2.1 根據牛頓第二定律建立系統的運動微分方程73
2.2.2 用其他方法建立系統的運動微分方程74
2.2.3 鉛垂方向上彈簧-質量系統的運動微分方程75
2.2.4 運動微分方程的解76
2.2.5 簡諧運動77
2.3 無阻尼扭轉系統的自由振動85
2.3.1 運動微分方程86
2.3.2 運動微分方程的解87
2.4 運動的穩定性條件89
2.5 瑞利能量法90
2.6 黏性阻尼系統的自由振動94
2.6.1 運動微分方程94
2.6.2 方程的解94
2.6.3 對數衰減係數98
2.6.4 黏性阻尼消耗的能量99
2.6.5 有黏性阻尼的扭振系統100
2.7 庫侖阻尼系統的自由振動105
2.7.1 運動微分方程105
2.7.2 方程的解107
2.7.3 有庫侖阻尼的扭振系統109
2.8 滯後阻尼系統的自由振動110
2.9 利用MATLAB求解的例子114
2.10 C++程式119
2.11 Fortran程式120
參考文獻121
思考題122
習題125
設計題目146
第3章 單自由度系統在簡諧激勵下的振動148
3.1 引言148
3.2 運動微分方程148
3.3 無阻尼系統在簡諧力作用下的回響149
3.3.1 總回響151
3.3.2 拍振現象152
3.4 簡諧力作用下有阻尼系統的回響154
3.4.1 總回響156
3.4.2 品質因子與頻寬158
3.5 F(t)=Feiωt作用下阻尼系統的回響159
3.6 基礎作簡諧運動時阻尼系統的回響161
3.6.1 所傳遞的力163
3.6.2 相對運動164
3.7 具有旋轉不平衡質量的阻尼系統的回響166
3.8 庫侖阻尼系統的強迫振動169
3.9 滯後阻尼系統的強迫振動172
3.10 其他類型阻尼系統的強迫振動173
3.11 自激振動與穩定性分析174
3.11.1 動力穩定性分析174
3.11.2 流體導致的動力不穩定176
3.12 利用MATLAB求解的例子182
3.13 C++程式188
3.14 Fortran程式189
參考文獻190
思考題191
習題194
設計題目207
第4章 單自由度系統在一般激勵下的振動208
4.1 引言208
4.2 一般周期力作用下的回響208
4.3 不規則形式的周期力作用下的回響213
4.4 非周期力作用下的回響215
4.5 褶積積分215
4.5.1 對衝量的回響216
4.5.2 對一般力的回響219
4.5.3 對基礎激勵的回響219
4.6 回響譜225
4.6.1 基礎激勵的回響譜227
4.6.2 地震回響譜229
4.6.3 衝擊環境下的設計232
4.7 拉普拉斯變換234
4.8 套用數值方法求解不規則激勵下的回響238
4.9 利用MATLAB求解的例子244
4.10 C++程式248
4.11 Fortran程式251
參考文獻252
思考題253
習題255
設計題目265
第5章 二自由度系統的振動267
5.1 引言267
5.2 受迫振動的運動微分方程269
5.3 無阻尼系統的自由振動分析270
5.4 扭振系統276
5.5 坐標耦合與主坐標280
5.6 受迫振動分析284
5.7 半正定系統286
5.8 自激振動與穩定性分析288
5.9 利用MATLAB求解的例子289
5.10 C++程式296
5.11 Fortran程式296
參考文獻297
思考題298
習題300
設計題目312
第6章 多自由度系統314
6.1 引言314
6.2 連續系統模型化為多自由度系統314
6.3 運用牛頓第二定律推導運動微分方程316
6.4 影響係數319
6.4.1 剛度影響係數319
6.4.2 柔度影響係數323
6.4.3 慣性影響係數327
6.5 以矩陣形式表示的勢能與動能328
6.6 廣義坐標與廣義力330
6.7 用拉格朗日方程推導運動微分方程331
6.8 以矩陣形式表示的無阻尼系統的運動微分方程334
6.9 特徵值問題335
6.10 特徵值問題的解336
6.10.1 特徵方程的解336
6.10.2 主振型的正交性340
6.10.3 重特徵值342
6.11 展開定理344
6.12 無約束系統344
6.13 無阻尼系統的自由振動347
6.14 用模態分析法求無阻尼系統的強迫振動349
6.15 黏性阻尼系統的強迫振動354
6.16 自激振動及其穩定性分析358
6.17 利用MATLAB求解的例子360
6.18 C++程式368
6.19 Fortran程式369
參考文獻370
思考題371
習題375
設計題目385
第7章 多自由度系統固有頻率與振型的近似計算方法386
7.1 引言386
7.2 鄧克萊法387
7.3 瑞利法388
7.3.1 瑞利第一商389
7.3.2 瑞利第二商390
7.4 霍爾茨法392
7.4.1 扭振系統392
7.4.2 彈簧-質量系統394
7.5 李茲法395
7.6 矩陣疊代法397
7.6.1 用矩陣疊代法求第一階固有頻率和主振型397
7.6.2 用矩陣疊代法求較高階的固有頻率及主振型400
7.7 雅可比法401
7.8 子空間疊代法403
7.9 標準特徵值問題407
7.9.1 切比雪夫(Chebyshev)分解408
7.9.2 其他解法409
7.10 利用MATLAB求解的例子409
7.11 C++程式412
7.12 Fortran程式414
參考文獻416
思考題417
習題420
設計題目424
第8章 連續系統的振動425
8.1 引言425
8.2 弦或索的橫向振動425
8.2.1 運動微分方程425
8.2.2 初始條件與邊界條件427
8.2.3 等截面弦的自由振動427
8.2.4 兩端固定弦的自由振動428
8.2.5 行波的解430
8.3 桿的縱向振動431
8.3.1 運動微分方程及其解431
8.3.2 振型函式的正交性433
8.4 圓桿或軸的扭轉振動437
8.5 梁的橫向振動439
8.5.1 運動微分方程439
8.5.2 初始條件441
8.5.3 自由振動441
8.5.4 邊界條件442
8.5.5 振型函式的正交性444
8.5.6 強迫振動446
8.5.7 軸向力的影響447
8.5.8 轉動慣量與剪下變形的影響449
8.5.9 其他影響452
8.6 薄膜的振動453
8.6.1 運動微分方程453
8.6.2 初始條件與邊界條件454
8.7 瑞利法455
8.8 瑞利-李茲法456
8.9 利用MATLAB求解的例子459
8.10 C++程式462
8.11 Fortran程式462
參考文獻463
思考題464
習題467
設計題目474
第9章 振動控制475
9.1 引言475
9.2 振動列線圖和振動標準475
9.3 抑制振源強度479
9.4 旋轉機械的平衡479
9.4.1 單面平衡480
9.4.2 雙面平衡481
9.5 軸的渦動485
9.5.1 運動微分方程485
9.5.2 臨界速度487
9.5.3 系統的回響487
9.5.4 穩定性分析489
9.6 活塞式發動機的平衡490
9.6.1 氣體壓力變化產生的不平衡力490
9.6.2 運動部件的慣性產生的不平衡力491
9.6.3 活塞式發動機的平衡493
9.7 振動的控制495
9.8 固有頻率的控制495
9.9 阻尼的套用495
9.10 振動隔離497
9.10.1 剛性基礎的振動隔離系統498
9.10.2 振源的隔離500
9.10.3 彈性基礎的振動隔離系統501
9.10.4 部分彈性基礎的振動隔離系統504
9.10.5 衝擊隔離505
9.10.6 主動振動控制507
9.11 吸振器508
9.11.1 無阻尼動力吸振器508
9.11.2 有阻尼動力吸振器511
9.12 利用MATLAB求解的例子514
9.13 C++程式523
9.14 Fortran程式523
參考文獻524
思考題526
習題528
設計題目537
第10章 振動測量與套用538
10.1 引言538
10.2 感測器539
10.2.1 變電阻感測器539
10.2.2 壓電感測器541
10.2.3 電動式感測器542
10.2.4 線性變化差動變換感測器542
10.3 拾振器543
10.3.1 測振計545
10.3.2 加速度計545
10.3.3 速度計548
10.3.4 相位失真549
10.4 頻率測量儀551
10.5 激振器552
10.5.1 機械式激振器552
10.5.2 電動式激振器553
10.6 信號分析554
10.6.1 頻譜分析儀554
10.6.2 帶通濾波器555
10.6.3 恆百分比頻寬濾波器和恆頻寬濾波器555
10.7 機械和結構的動態測試556
10.7.1 測量運行時的變形556
10.7.2 模態測試557
10.8 實驗模態分析557
10.8.1 基本觀點557
10.8.2 所需儀器557
10.8.3 數位訊號處理559
10.8.4 隨機信號分析561
10.8.5 從觀察到的峰值確定模態數據563
10.8.6 根據奈奎斯特圖確定模態數據564
10.8.7 模態形狀的測量566
10.9 機器運行狀態監測與診斷568
10.9.1 振動強度標準568
10.9.2 設備檢修技術568
10.9.3 機械運行狀況監測技術570
10.9.4 振動監測技術570
10.9.5 儀器系統574
10.9.6 監測參數的選取575
10.10 利用MATLAB求解的例子575
參考文獻578
思考題579
習題582
設計題目586
第11章 非線性振動587
11.1 引言587
11.2 非線性振動問題的例子587
11.2.1 單擺587
11.2.2 機械顫振,皮帶摩擦系統589
11.2.3 變質量系統589
11.3 精確解法589
11.4 近似分析方法590
11.4.1 基本原理591
11.4.2 林茲泰德攝動方法593
11.4.3 疊代法594
11.4.4 李茲-伽遼金法597
11.5 亞諧振動和超諧振動599
11.5.1 亞諧振動599
11.5.2 超諧振動601
11.6 變參數系統(馬休方程)602
11.7 圖解法606
11.7.1 相平面法606
11.7.2 相速度609
11.7.3 繪製相軌線的方法610
11.7.4 根據相軌線求時域解611
11.8 平衡狀態的穩定性612
11.8.1 穩定性分析612
11.8.2 奇點的分類613
11.9 極限環615
11.10 混沌616
11.10.1 具有穩定軌道的函式617
11.10.2 具有不穩定軌道的函式618
11.10.3 沒有激勵項時達芬方程的混沌行為619
11.10.4 有激勵項時達芬方程的混沌行為621
11.11 利用MATLAB求解的例子623
11.12 C++程式632
11.13 Fortran程式632
參考文獻633
思考題635
習題638
設計題目642
第12章 隨機振動644
12.1 引言644
12.2 隨機變數與隨機過程645
12.3 機率分布645
12.4 均值與標準差647
12.5 幾個隨機變數的聯合機率分布648
12.6 隨機過程的相關函式649
12.7 平穩隨機過程650
12.8 高斯隨機過程652
12.9 傅立葉分析653
12.9.1 傅立葉級數653
12.9.2 傅立葉積分655
12.10 功率譜密度657
12.11 寬頻和窄帶隨機過程659
12.12 單自由度系統的回響660
12.12.1 脈衝回響函式法660
12.12.2 頻響函式法661
12.12.3 回響函式的特點662
12.13 平穩隨機激勵下的回響663
12.13.1 脈衝回響函式法663
12.13.2 頻響函式法664
12.14 多自由度系統的回響668
12.15 利用MATLAB求解的例子672
參考文獻675
思考題676
習題679
設計題目684
附錄A 拉普拉斯變換對685
參考文獻686
附錄B 單位687
參考文獻689
附錄C 部分習題答案690