東莞超音波模具

對不同的焊接對象需要有不同工具頭,不管是近場焊接還是傳輸焊接,只有半波長的工具頭才能使焊接端面達到最大的振幅。工具頭,有帶振幅放大的和不帶振幅放大的兩種,欣宇塑膠焊接機用聲學系統工具頭,所用材料通常為鋁合金,其端面鍍硬質合金,功率較大時也有用鈦合金材料製成的,該材料疲勞強度比鋁合金高一倍多。

基本介紹

  • 中文名:東莞超音波模具
  • 特性:超音波可傳遞很強的能量
  • 特點:超音波在傳播時方向性強
  • 套用方法:熔接法
型號和規格,原理,作用,特性,特點,套用方法,設計與製作,振幅參數,頻率參數,

型號和規格

超音波塑膠焊接機由於使用場合及焊接材料不同,焊接尺寸大小不一樣,其規格也是各式各樣的。其輸出功率從手工焊
接機的幾十瓦到大型機的幾千瓦頻率一般在15KHz到40KHz範圍內。
我們知道,當物體振動時會發出聲音。科學家們將每秒鐘振動的次數稱為聲音的頻率,它的單位是赫茲。我們人類耳朵能聽到的聲波頻率為20~20,000赫茲。當聲波的振動頻率大於20000赫茲或小於20赫茲時,我們便聽不見了。因此,我們把頻率高於20000赫茲的聲波稱為“超音波”。通常用於醫學診斷的超音波頻率為1~5兆赫。欣宇超音波具有方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠等特點。可用於測距,測速,清洗,焊接,碎石等。在醫學,軍事,工業,農業上有明顯的作用.
理論研究表明,在振幅相同的條件下,一個物體振動的能量與振動頻率成正比,超音波在介質中傳播時,介質質點振動的頻率很高,因而能量很大.在我國北方乾燥的冬季,如果把超音波通入水罐中,劇烈的振動會使罐中的水破碎成許多小霧滴,再用小風扇把霧滴吹入室內,就可以增加室內空氣濕度.這就是超音波加濕器的原理.對於咽喉炎.氣管炎等疾病,藥品很難血流到打患病的部位.利用加濕器的原理,把藥液霧化,讓病人吸入,能夠療效.利用超音波巨大的能量還可以使人體內的結石做劇烈的受迫振動而破碎.

原理

聲波是物體機械振動狀態(或能量)的傳播形式。所謂振動是指物質的質點在其平衡位置附近進行的往返運動。譬如,鼓面經敲擊後,它就上下振動,這種振動狀態通過空氣媒質向四面八方傳播,這便是聲波。超音波是指振動頻率大於20KHz以上的,其每秒的振動次數(頻率)甚高,超出了人耳聽覺的上限(20000Hz),人們將這種聽不見的聲波叫做超音波。超聲和可聞聲本質上是一致的,它們的共同點都是一種機械振動,通常以縱波的方式在彈性介質內會傳播,是一種能量的傳播形式,其不同點是超聲頻率高,波長短,在一定距離內沿直線傳播具有良好的束射性和方向性,目前腹部超聲成象所用的頻率範圍在2∽5MHz之間,常用為3∽3.5MHz(每秒振動1次為1Hz,1MHz=10^6Hz,即每秒振動100萬次,可聞波的頻率在16-20,000HZ之間)。
超音波的兩個主要參數
超音波的兩個主要參數:頻率:F≥20KHz;功率密度:p=發射功率(W)/發射面積(cm2);通常p≥0.3w/cm2;在液體中傳播的超音波能對物體表面的污物進行清洗,其原理可用“空化”現象來解釋:超音波振動在液體中傳播的音波壓強達到一個大氣壓時,其功率密度為0.35w/cm2,這時超音波的音波壓強峰值就可達到真空或負壓,但實際上無負壓存在,因此在液體中產生一個很大的壓力,將液體分子拉裂成空洞一空化核。此空洞非常接近真空,它在超音波壓強反向達到最大時破裂,由於破裂而產生的強烈衝擊將物體表面的污物撞擊下來。這種由無數細小的空化氣泡破裂而產生的衝擊波現象稱為“空化”現象。

作用

玻璃零件.玻璃和陶瓷製品的除垢是件麻煩事,如果把這些物品放入清洗液中,再通入超音波,清洗液的劇烈振動衝擊物品上的污垢,能夠很快清洗乾淨.
雖然說人類聽不出超音波,但不少動物卻有此本領。它們可以利用超音波“導航”、追捕食物,或避開危險物。大家可能看到過夏天的夜晚有許多蝙蝠在庭院裡來回飛翔,它們為什麼在沒有光亮的情況下飛翔而不會迷失方向呢?原因就是蝙蝠能發出2~10萬赫茲的超音波,這好比是一座活動的“雷
達站”。蝙蝠正是利用這種“雷達”判斷飛行前方是昆蟲,或是障礙物的。而雷達的質量有幾十,幾百,幾千千克,,而在一些重要性能上的精確度.抗干擾能力等,蝙蝠遠優與現代無線電定位器.深入研究動物身上各種器官的功能和構造,將獲得的知識用來改進現有的設備,這是近幾十年來發展起來的一門新學科,叫做仿生學.
我們人類直到第一次世界大戰才學會利用超音波,這就是利用“聲納”的原理來探測水中目標及其狀態,如潛艇的位置等。此時人們向水中發出一系列不同頻率的超音波,然後記錄與處理反射回聲,從回聲的特徵我們便可以估計出探測物的距離、形態及其動態改變。醫學上最早利用超音波是在1942年,奧地利醫生杜西克首次用超聲技術掃描腦部結構;以後到了60年代醫生們開始將超音波套用於腹部器官的探測。如今超音波掃描技術已成為現代醫學診斷不可缺少的工具。
醫學超音波檢查的工作原理與聲納有一定的相似性,即將超音波發射到人體內,當它在體內遇到界面時會發生反射及折射,並且在人體組織中可能被吸收而衰減。因為人體各種組織的形態與結構是不相同的,因此其反射與折射以及吸收超音波的程度也就不同,醫生們正是通過儀器所反映出的波型、曲線,或影象的特徵來辨別它們。此外再結合解剖學知識、正常與病理的改變,便可診斷所檢查的器官是否有病。
目前,醫生們套用的超聲診斷方法有不同的形式,可分為A型、B型、M型及D型四大類。
A型:是以波形來顯示組織特徵的方法,主要用於測量器官的徑線,以判定其大小。可用來鑑別病變組織的一些物理特性,如實質性、液體或是氣體是否存在等。
B型:用平面圖形的形式來顯示被探查組織的具體情況。檢查時,首先將人體界面的反射信號轉變為強弱不同的光點,這些光點可通過螢光屏顯現出來,這種方法直觀性好,重複性強,可供前後對比,所以廣泛用於婦產科、泌尿、消化及心血管等系統疾病的診斷。
M型:是用於觀察活動界面時間變化的一種方法。最適用於檢查心臟的活動情況,其曲線的動態改變稱為超聲心動圖,可以用來觀察心臟各層結構的位置、活動狀態、結構的狀況等,多用於輔助心臟及大血管疫病的診斷。
D型:是專門用來檢測血液流動和器官活動的一種超聲診斷方法,又稱為都卜勒超聲診斷法。可確定血管是否通暢、管腔有否狹窄、閉塞以及病變部位。新一代的D型超音波還能定量地測定管腔內血液的流量。近幾年來科學家又發展了彩色編碼都卜勒系統,可在超聲心動圖解剖標誌的指示下,以不同顏色顯示血流的方向,色澤的深淺代表血流的流速。現在還有立體超聲顯象、超聲CT、超聲內窺鏡等超聲技術不斷湧現出來,並且還可以與其他檢查儀器結合使用,使疾病的診斷準確率大大提高。超音波技術正在醫學界發揮著巨大的作用,隨著科學的進步,它將更加完善,將更好地造福於人類。
研究超音波的產生、傳播、接收,以及各種超聲效應和套用的聲學分支叫超聲學。產生超音波的裝置有機械型超聲發生器(例如氣哨、汽笛和液哨等)、利用電磁感應和電磁作用原理製成的電動超聲發生器、
以及利用壓電晶體的電致伸縮效應和鐵磁物質的磁致伸縮效應製成的電聲換能器等。
超聲效應當超音波在介質中傳播時,由於超音波與介質的相互作用,使介質發生物理的和化學的變化,從而產生
一系列力學的、熱的、電磁的和化學的超聲效應,包括以下4種效應:
①機械效應。超音波的機械作用可促成液體的乳化、凝膠的液化和固體的分散。當超音波流體介質中形成駐波時,懸浮在流體中的微小顆粒因受機械力的作用而凝聚在波節處,在空間形成周期性的堆積。超音波在壓電材料和磁致伸縮材料中傳播時,由於超音波的機械作用而引起的感生電極化和感生磁化(見電介質物理學和磁致伸縮)。
②空化作用。超音波作用於液體時可產生大量小氣泡。一個原因是液體內局部出現拉應力而形成負壓,壓強的降低使原來溶於液體的氣體過飽和,而從液體逸出,成為小氣泡。另一原因是強大的拉應力把液體“撕開”成一空洞,稱為空化。空洞內為液體蒸氣或溶於液體的另一種氣體,甚至可能是真空。因空化作用形成的小氣泡會隨周圍介質的振動而不斷運動、長大或突然破滅。破滅時周圍液體突然沖入氣泡而產生高溫、高壓,同時產生激波。與空化作用相伴隨的內摩擦可形成電荷,並在氣泡內因放電而產生髮光現象。在液體中進行超聲處理的技術大多與空化作用有關。
③熱效應。由於超音波頻率高,能量大,被介質吸收時能產生顯著的熱效應。
④化學效應。超音波的作用可促使發生或加速某些化學反應。例如純的蒸餾水經超聲處理後產生過氧化氫;溶有氮氣的水經超聲處理後產生亞硝酸;染料的水溶液經超聲處理後會變色或退色。這些現象的發生總與空化作用相伴隨。超音波還可加速許多化學物質的水解、分解和聚合過程。超音波對光化學和電化學過程也有明顯影響。各種胺基酸和其他有機物質的水溶液經超聲處理後,特徵吸收光譜帶消失而呈均勻的一般吸收,這表明空化作用使分子結構發生了改變。
超聲套用超聲效應已廣泛用於實際,主要有如下幾方面:
①超聲檢驗。超音波的波長比一般聲波要短,具有較好的方向性,而且能透過不透明物質,這一特性已被廣泛用於超音波探傷、測厚、測距、遙控和超聲成像技術。超聲成像是利用超音波呈現不透明物內部形象的技術。把從換能器發出的超音波經聲透鏡聚焦在不透明試樣上,從試樣透出的超音波攜帶了被照部位的信息(如對聲波的反射、吸收和散射的能力),經聲透鏡匯聚在壓電接收器上,所得電信號輸入放大器,利用掃描系統可把不透明試樣的形象顯示在螢光屏上。上述裝置稱為超聲顯微鏡。超聲成像技術已在醫療檢查方面獲得普遍套用,在微電子器件製造業中用來對大規模積體電路進行檢查,在材料科學中用來顯示合金中不同組分的區域和晶粒間界等。聲全息術是利用超音波的干涉原理記錄和重現不透明物的立體圖像的聲成像技術,其原理與光波的全息術基本相同,只是記錄手段不同而已(見全息術)。用同一超聲信號源激勵兩個放置在液體中的換能器,它們分別發射兩束相干的超音波:一束透過被研究的物體後成為物波,另一束作為參考波。物波和參考波在液面上相干疊加形成聲全息圖,用雷射束照射聲全息圖,利用雷射在聲全息圖上反射時產生的衍射效應而獲得物的重現像,通常用攝像機和電視機作實時觀察。
②超聲處理。利用超聲的機械作用、空化作用、熱效應和化學效應,可進行超聲焊接、鑽孔、固體的粉碎、乳化、脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛套用。
③基礎研究。超音波作用於介質後,在介質中產生聲弛豫過程,聲弛豫過程伴隨著能量在分子各自電度間的輸運過程,並在巨觀上表現出對聲波的吸收(見聲波)。通過物質對超聲的吸收規律可探索物質的特性和結構,這方面的研究構成了分子聲學這一聲學分支。普通聲波的波長遠大於固體中的原子間距,在此條件下固體可當作連續介質。但對頻率在1012赫以上的特超音波,波長可與固體中的原子間距相比擬,此時必須把固體當作是具有空間周期性的點陣結構。點陣振動的能量是量子化的,稱為聲子(見固體物理學)。特超聲對固體的作用可歸結為特超聲與熱聲子、電子、光子和各種準粒子的相互作用。對固體中特超聲的產生、檢測和傳播規律的研究,以及量子液體——液態氦中聲現象的研究構成了近代聲學的新領域——
聲波是屬於聲音的類別之一,屬於機械波,聲波是指人耳能感受到的一種縱波,其頻率範圍為16Hz-20KHz。當聲波的頻率低於16Hz時就叫做次聲波,高於20KHz則稱為超音波聲波。

特性

1)超音波可在氣體、液體、固體、固熔體等介質中有效傳播。
2)超音波可傳遞很強的能量。
3)超音波會產生反射、干涉、疊加和共振現象。
4)超音波在液體介質中傳播時,可在界面上產生強烈的衝擊和空化現象。
超音波是聲波大家族中的一員。
聲波是物體機械振動狀態(或能量)的傳播形式。所謂振動是指物質的質點在其平衡位置附近進行的往返運動。譬如,鼓面經敲擊後,它就上下振動,這種振動狀態通過空氣媒質向四面八方傳播,這便是聲波。
超音波是指振動頻率大於20KHz以上的,人在自然環境下無法聽到和感受到的聲波。
超音波治療的概念:
超聲治療學是超聲醫學的重要組成部分。超聲治療時將超音波能量作用於人體病變部位,以達到治療疾患和促進機體康復的目的。
在全球,超音波廣泛運用於診斷學、治療學、工程學、生物學等領域。賽福瑞家用超聲治療機屬於超音波治療學的運用範疇。
(一)工程學方面的套用:水下定位與通訊、地下資源勘查等
(二)生物學方面的套用:剪下大分子、生物工程及處理種子等
(三)診斷學方面的套用:A型、B型、M型、D型、雙功及彩超等
(四)治療學方面的套用:理療、治癌、外科、體外碎石、牙科等

特點

1、超音波在傳播時,方向性強,能量易於集中。
2、超音波能在各種不同媒質中傳播,且可傳播足夠遠的距離。
3、超聲與傳聲媒質的相互作用適中,易於攜帶有關傳聲媒質狀態的信息(診斷或對傳聲媒質產生效應。(治療)
超音波是一種波動形式,它可以作為探測與負載信息的載體或媒介(如B超等用作診斷);欣宇超音波同時又是一種能量形式,當其強度超過一定值時,它就可以通過與傳播超音波的媒質的相互作用,去影響,改變以致破壞後者的狀態,性質及結構(用作治療)。
編輯本段超音波的發展史
一、國際方面:
自19世紀末到20世紀初,在物理學上發現了壓電效應與反壓電效應之後,人們解決了利用電子學技術產生超音波的辦法,從此迅速揭開了發展與推廣超聲技術的歷史篇章。
1922年,德國出現了首例超音波治療的發明專利。
1939年發表了有關超音波治療取得臨床效果的文獻報導。
40年代末期超聲治療在歐美興起,直到1949年召開的第一次國際醫學超音波學術會議上,才有了超聲治療方面的論文交流,為超聲治療學的發展奠定了基礎。1956年第二屆國際超聲醫學學術會議上已有許多論文發表,超聲治療進入了實用成熟階段。
二、國內方面:
國內在超聲治療領域起步稍晚,於20世紀50年代初才只有少數醫院開展超聲治療工作,從1950年首先在北京開始用800KHz頻率的超聲治療機治療多種疾病,至50年代開始逐步推廣,並有了國產儀器。公開的文獻報導始見於1957年。到了70年代有了各型國產超聲治療儀,超聲療法普及到全國各大型醫院。
40多年來,全國各大醫院已積累了相當數量的資料和比較豐富的臨床經驗。特別是20世紀80年代初出現的超聲體外機械波碎石術和超聲外科,是結石症治療史上的重大突破。如今已在國際範圍內推廣套用。高強度聚焦超聲無創外科,已使超聲治療在當代醫療技術中占據重要位置。而在21世紀(HIFU)超聲聚焦外科已被譽為是21世紀治療腫瘤的最新技術。
超音波治病機理:
1.機械效應:超聲在介質中前進時所產生的效應。(超聲在介質中傳播是由反射而產生的機械效應)它可引起機體若干反應。超聲振動可引起組織細胞內物質運動,由於超聲的細微按摩,使細胞漿流動、細胞震盪、旋轉、摩擦、從而產生細胞按摩的作用,也稱為“內按摩”這是超音波治療所獨有的特性,可以改變細胞膜的通透性,刺激細胞半透膜的彌散過程,促進新陳代謝、加速血液和淋巴循環、改善細胞缺血缺氧狀態,改善組織營養、改變蛋白合成率、提高再生機能等。使細胞內部結構發生變化,導致細胞的功能變化,使堅硬的結締組織延伸,鬆軟。
超音波的機械作用可軟化組織,增強滲透,提高代謝,促進血液循環,刺激神經系統和細胞功能,因此具有超音波獨特的治療意義。
2.溫熱效應:人體組織對超聲能量有比較大的吸收本領,因此當超音波在人體組織中傳播過程中,其能量不斷地被組織吸收而變成熱量,其結果是組織的自身溫度升高。
產熱過程既是機械能在介質中轉變成熱能的能量轉換過程。即內生熱。超聲溫熱效應可增加血液循環,加速代謝,改善局部組織營養,增強酶活力。一般情況下,超音波的熱作用以骨和結締組織為顯著,脂肪與血液為最少。
3.理化效應:超聲的機械效應和溫熱效應均可促發若干物理化學變化。實踐證明一些理化效應往往是上述效應的繼發效應。TS-C型治療機通過理化效應繼發出下列五大作用:
A.彌散作用:超音波可以提高生物膜的通透性,超音波作用後,細胞膜對鉀,鈣離子的通透性發生較強的改變。從而增強生物膜彌散過程,促進物質交換,加速代謝,改善組織營養。
B.觸變作用:超聲作用下,可使凝膠轉化為溶膠狀態。對肌肉,肌腱的軟化作用,以及對一些與組織缺水有關的病理改變。如類風濕性關節炎病變和關節、肌腱、韌帶的退行性病變的治療。
C.空化作用:空化形成,或保持穩定的單向振動,或繼發膨脹以致崩潰,細胞功能改變,細胞內鈣水平增高。成纖維細胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,膠原張力增加。
D.聚合作用與解聚作用:水分子聚合是將多個相同或相似的分子合成一個較大的分子過程。大分子解聚,是將大分子的化學物變成小分子的過程。可使關節內增加水解酶和原酶活性增加。
E.消炎,修復細胞和分子:超聲作用下,可使組織PH值向鹼性方面發展。緩解炎症所伴有的局部酸中毒。超聲可影響血流量,產生致炎症作用,抑制並起到抗炎作用。使白細胞移動,促進血管生成。膠原合成及成熟。促進或抑制損傷的修復和癒合過程。從而達到對受損細胞組織進行清理、激活、修復的過程。
量子聲學。
超音波還可以進行雷達探測.清洗較為精細的物品,如鐘錶,可以利用超音波來擊碎病人體內膽結石,還可以利用超音波測距.
超音波檢測還用於電阻焊的焊點強度的檢測。
人耳可以聽見的波動,其頻率約在16Hz到20KHz之間,如果”波動〃的頻率高於此範圍,則人類則無法聽見,特稱之為超音波.所謂”波動〃即為物質中的粒子受外力作用時所產生的機械性振湯.例如將懸掛於彈簧下方的物體向下拉使彈簧伸長,然後將物體放開,則該物體受彈簧力的作用,產生一上下往復性的振動,其偏離靜止位置的移動與時間的關係,即為正弦波.
超音波依其波傳送方向的波動方式可分為縱波,橫波,表面波,藍姆波四種.其在料件中之傳送,根據能量不滅定律,音波在一種物質中傳送,或由一種物質傳入另一種物質時,由於受到衰減,反射及折射的作用,其能量必然愈來愈弱;但是在材料密度較大的部分,音壓卻會增大〈但因音阻抗亦變大,能量仍是減少〉,反之在疏鬆的部分,其音量變大.
編輯本段相關的文章
夜晚的實驗
義大利科學家斯帕拉捷習慣晚飯後到附近的街道上散步。他常常看到,很多蝙蝠靈活的在空中飛來飛去,卻從不會撞到牆壁上。這個現象引起了他的好奇:蝙蝠憑什麼特殊本領在夜空中自由自在的飛行呢?
1793年夏天,一個晴朗的夜晚,喧騰熱鬧的城市漸漸平靜下來。帕斯拉捷匆匆吃完飯,便走出街頭,把籠子裡的蝙蝠放了出去。當他看到放出去的幾隻蝙蝠輕盈敏捷地來回飛翔時,不由得尖叫起來。因為那幾隻蝙蝠,眼睛全被他蒙上了,都是“瞎子”呀。
斯帕拉捷為什麼要把蝙蝠的眼睛蒙起來呢?原來,每當他看到蝙蝠在夜晚自由自在的飛翔時,總認為這些小精靈一定長著一雙特別敏銳的眼睛,就不可能在黑夜中靈巧的多過各種障礙物,並且敏捷的捕捉飛蛾了。然而事實完全出乎他的意料。斯帕拉捷很奇怪:不用眼睛,蝙蝠憑什麼來辨別前方的物體,捕捉靈活的飛蛾呢?
於是,他把蝙蝠的鼻子堵住.結果,蝙蝠在空中還是飛的那么敏捷、輕鬆。“難道他薄膜似的翅膀,不僅能夠飛翔,而且能在夜間洞察一切嗎?”斯帕拉捷這樣猜想。他又捉來幾隻蝙蝠,用油漆塗滿它們的全身,然而還是沒有影響到它們飛行。
最後,斯帕拉捷堵住蝙蝠的耳朵,把他們放到夜空中。這次,蝙蝠可沒有了先前的神氣。他們像無頭蒼蠅一樣在空中東碰西撞,很快就跌落在地。
啊!蝙蝠在夜間飛行,捕捉食物,原來是靠聽覺來辨別方向、確認目標的!
斯帕拉捷的實驗,揭開了蝙蝠飛行的秘密,促使很多人進一步思考:蝙蝠的耳朵又怎么能“穿透”黑夜,“聽”到沒有聲音的物體呢?
後來人們繼續研究,終於弄清了其中的奧秘。原來,蝙蝠靠喉嚨發出人耳聽不見的“超音波”,這種聲音沿著直線傳播,一碰到物體就像光照到鏡子上那樣反射回來。蝙蝠用耳朵接受到這種“超音波”,就能迅速做出判斷,靈巧的自由飛翔,捕捉食物。
現在,人們利用超音波來為飛機、輪船導航,尋找地下的寶藏。超音波就像一位無聲的功臣,廣泛地套用於工業、農業、醫療和軍事等領域。斯帕拉捷怎么也不會想到,自己的實驗,會給人類帶來如此巨大的恩惠。
超音波焊接——
套用超音波可以對熱塑性工件使用熔接、鉚焊、成形焊或點焊等多種方法進行焊接。超音波焊接設備既可以獨立操作,也可以用於自動化生產環境。那些內置精密電子組件的塑膠工件,如微型開關等,就適合使用超音波對其進行焊接。同時,不止一種方法可能被用來對成品進行加工,如焊接軟碟和卡帶的內部使用鉚焊方式,而對其外部的焊接則使用熔接法
超音波空泡煉油的化學原理
液體內部產生的強超音波引發出高能量密集式空泡群,空泡爆炸時,在微小的空間內瞬間產生高達一千大氣壓的壓力和上千度的高溫。
在高壓高溫下,重油分子中C-C鍵斷裂,大分子的碳氫化合物分解為小分子的碳氫化合物;原料中硫的有機化物在超音波與空泡作用下,其C-S鍵發生斷裂,轉變為中間烯烴、正烷烴、芳烴和硫化氫。生成的烯烴在超音波熱解過程中轉變為正烷烴和芳烴。
含硫份高的重油大分子轉化為低硫小分子的汽油和柴油。少量沒有轉化或轉化程度低的剩餘物用於製備高品質瀝青
通過上焊件把超聲能量傳送到焊區,由於焊區即兩個焊接的交界面處聲阻大,因此會產生局部高溫。又由於塑膠導熱性差,一時還不能及時散發,聚集在焊區,致使兩個塑膠的接觸面迅速熔化,加上一定壓力後,使其融合成一體。當超音波停止作用後,讓壓力持續,有些許保壓時間,使其凝固成型,這樣就形成一個堅固的分子鏈,達到焊接的目的,焊接強度能接近於原材料本體強度。

套用方法

熔接法
以超音波超高頻率振動的焊頭在適度壓力下,使二塊塑膠的接合面產生摩擦熱而瞬間熔融接合,焊接強度可與本體媲美,採用合適的工件和合理的接口設計,可達到水密及氣密,並免除採用輔助品所帶來的不便,實現高效清潔的熔接。
鉚焊法
將超音波超高頻率振動的焊頭,壓著塑膠品突出的梢頭,使其瞬間發熱融成為鉚釘形狀,使不同材質的材料機械鉚合在一起。
埋植
藉著焊頭之傳道及適當之壓力,瞬間將金屬零件(如螺母、螺桿等)擠入預留入塑膠孔內,固定在一定深度,完成後無論拉力、扭力均可媲美傳統模具內成型之強度,可免除射出模受損及射出緩慢之缺點。
成型
本方法與鉚焊法類似,將凹狀的焊頭壓著於塑膠品外圈,焊頭髮出超音波超高頻振動後將塑膠溶融成形而包覆於金屬物件使其固定,且外觀光滑美觀、此方法多使用在電子類、喇叭之固定成形,及化妝品類之鏡片固定等。
點焊
A、將二片塑膠分點熔接無需預先設計焊線,達到熔接目的。
B、對比較大型工件,不易設計焊線的工件進行分點焊接,而達到熔接效果,可同時點焊多點。
切割封口
運用超音波瞬間發振工作原理,對化纖織物進行切割,其優點切口光潔不開裂、不拉絲。

設計與製作

超音波模具的設計和生產一定是非常的簡單。千萬不要被誤導,當使用一個加工不當或是未經過調諧的焊頭,將給你的生產帶來昂貴的損失——它會破壞焊接效果,甚至更嚴重的會直接導致換能器或發生器的損壞。
因此超音波模具的設計絕不像它的外形那樣簡單,相反需要很多的專業知識和技能——如何保證焊頭能夠最經濟的工作?如何保證焊頭能夠將換能器轉換的機械振動能有效地傳遞到工件上,形成持續穩定的焊接——在恆波超聲,我們的工程師將每一個環節都考慮得非常充分。
超音波模具是超音波技術中最具有技術深度的一個方面。即使已經擁有幾年的設計和開發經驗,我們還是堅信只有通過嚴格的測試和質量控制才能生產出最好的焊頭。我們的工程師將焊頭的聲學特性和機械特性完美的結合起來,設計出最符合客戶需要的產品。
我們生產的每一套焊頭和模具,不管是標準產品還是根據客戶要求定製的,都是用最好的材料製成的同時經過反覆的測試。焊頭的外形、強度以及音頻等各種參數經過多次試驗,能符合最為嚴格的標準,焊頭和模具達到最完美的匹配

振幅參數

振幅對於需要焊接的材料來說是一個關鍵參數,相當於鉻鐵的溫度,溫度達不到就會熔接不上,溫度過高就會使原材料燒焦或導致結構破壞而強度變差。因為每一間公司選擇的換能器不同,換能器輸出的振幅都有所不同,經過適配不同變比的變幅桿及焊頭,能夠校正焊頭的工作振幅以符合要求,通常換能器的輸出振幅為10—20μm,而工作振幅一般為30μm左右,變幅桿及焊頭的變比同變幅桿及焊頭的形狀,前後面積比等因素有關,形狀來說如指數型變幅、函式型變幅、階梯型變幅等,對變比影響很大,前後面積比與總變比成正比。貴公司選用的是不同公司品牌的焊接機,最簡單的方法是按已工作的焊頭的比例尺寸製作,能保證振幅參數的穩定

頻率參數

欣宇公司設計的超音波焊接機都有一個中心頻率,例如20KHz、40KHz等,焊接機的工作頻率主要由
鋁合金超音波模具
換能器(Transducer)、變幅桿(Booster)、和焊頭(Horn)的機械共振頻率所決定,發生器的頻率根據機械共振頻率調整,以達到一致,使焊頭工作在諧振狀態,每一個部份都設計成一個半波長的諧振體。發生器及機械共振頻率都有一個諧振工作範圍,如一般設定為±0.5KHz,在此範圍內焊接機基本都能正常工作.我們製作每一個焊頭時,都會對諧振頻率作調整,要求做到諧振頻率與設計頻率誤差小於0.1KHZ,如20KHz焊頭,我們焊頭的頻率會控制在19.90—20.10KHz,誤差為5‰</a>
振動節點
焊頭、變幅桿均被設計為一個工作頻率的半波長諧振體,在工作狀態下,兩個端面的振幅最大,應力最小,而相當於中間位置的節點振幅為零,應力最大。節點位置一般設計為固定位,但通常的固定位設計時厚度要大於3mm,或者是凹槽固定,所以固定位並不是一定為零振幅,這樣就會引致一些叫聲和一部分的能量損失,對於叫聲通常用橡膠圈同其它部件隔離,或採用隔聲材料進行禁止,能量損失在設計振幅參數時予以考慮</a>
加工精度
超音波焊頭因為工作於高頻振動情況下,應儘量保持一個對稱設計,以避免聲波傳遞的不對稱性導致的不均衡應力及橫向振動(我們所用於焊接的焊頭利用的是超音波振動的縱向傳遞,對於整個諧振系統而言),不均衡振動能導致焊頭髮熱及斷裂。超音波焊接套用於不同行業對加工精度要求是不同的,對於特別薄的工件如鋰離子電池極片與極耳的焊接、金箔等的包覆等對加工精度的要求非常高,我們所有的加工設備均採用數控設備(如加工中心等),這樣才能保證加工出來的精度符合要求。
模具使用壽命
一隻焊頭的使用壽命關鍵決定於兩個方面:一、材料,二、工藝
材料方面:超音波焊接要求金屬材料有柔順性好(聲波傳遞過程中機械損耗小)好的特點,所以最常用的材料為鋁合金及鈦合金材料是保證超音波模具壽命於熔接產品效果的主要原因之一,模具完成的過程是複雜的。所以不僅是模具工程師設計務必慎重選擇材質,亦需了解本身產品要求該使用何種材質,避免因疏忽而影響其時效與品質。現將目前各種材料的特性略述如下:(欣宇超音波公司均採用世界名牌美國BNS公司產品,該公司的7075-T651鋁材達到美國鋁業行業協會AAA標準)
一、鋁鎂合金(7075-T651,2024-T651,6061-T651)
1、7075T651:使用於振動系統及Horn製造,該材料具有極高的機械屈服強度,硬度高,
熱傳導性強,是理想的超音波模具製造材料;
2、2024T651:一般使用與HORN製造,軔性佳,熱傳導性強,硬度適中,用於一般塑膠製品。
3、6061T651:使用於較低出力之HORN製造,軔性佳,質較軟。
二、鈦合金:用於連續發振的機種,軔性較高,熱傳導佳,硬度高,而成本昂貴。
三、國產硬質鋁合金:國產料,用於普通鋁材加工,熱傳導低,對超音波機械損耗高,成本低。
生產一付超音波模具,要考慮以下各項因素:
1、產品的要求:決定模具的使用壽命,磨損率,因而決定採用何種金屬。
2、產品的形狀:採用何種熔接工藝,設定模具的大小,壓力傳達區,產品在熔合時可能產生的變形,需要多大功率和何種功能。是否可以一次熔接完成工作。
3、產品的塑膠性質:決定模具的工作震幅,那一件工作應接受超聲能量,導能線的形式,位置,大小。在不同的塑膠組合時,應怎樣設計接觸位?
4、優質的售後服務

相關詞條

熱門詞條

聯絡我們