李計勇(河北師範大學副教授)

李計勇(河北師範大學副教授)

本詞條是多義詞,共2個義項
更多義項 ▼ 收起列表 ▲

李計勇,男,博士,1980年6月24日出生,河北師範大學副教授

基本介紹

  • 中文名:李計勇
  • 學位/學歷:博士
  • 職業:教師
  • 專業方向:微分方程數值解;動力系統保結構算法
  • 任職院校:河北師範大學
個人經歷,主講課程,研究方向,學術成果,

個人經歷

教育背景:
博士,計算數學,南京大學,2009-2012
碩士,計算數學,南京大學,2007-2009
工作經歷:
2012年—現在,河北師範大學數學與信息科學學院

主講課程

主講本科生課程《高等數學》、《數值分析》等
主講研究生課程《工程數學》等

研究方向

微分方程數值解;動力系統保結構算法

學術成果

科研情況:
一. 承擔科研項目情況
1. 國家自然科學基金青年基金 (No.11401164),2015-2017,主持;
2. 河北省自然科學基金(No. A2014205136),2014-2016,主持;
3. 河北師範大學重點基金(No. L2013Z02),2014-2015,主持;
4. 河北師範大學博士基金(No.L2012B03),2013-2015,主持.
二.代表性論文
[15]Jiyong Li,Trigonometrically-fitted symmetric two-step hybrid methods for oscillatory second-order initial value problems, submitted
[14]Jiyong Li,Xianfen Wang, Ming Lu, Multi-step Runge-Kutta hybrid methods for special third-order ordinary differential equations, submitted
[13]Jiyong Li,Non-standard approach for singular problem, submitted.
[12]Jiyong Li*, Xianfen Wang, Multi-step Nyström methods for general second-order initial value problems y''(t) =f(t, y(t), y'(t)), International Journal of Computer Mathematics, accepted (SCI)
[11]Jiyong Li*, Xianfen Wang, Extended explicit pseudo two-step RKN methods for oscillatory systems y'' +My = f(y), Numerical Algorithms, accepted (SCI)
[10]Jiyong Li*,Xianfen Wang, Ming Lu, A class of linear multi-step method adapted to general oscillatory second-order initial value problems, Journal of Applied Mathematics and Computing, accepted (EI)
[9]Jiyong Li*,Trigonometrically-fitted multi-step hybrid methods for oscillatory special second-order initial value problems, International Journal of Computer Mathematics, accepted (SCI)
[8]Jiyong Li*, Trigonometrically fitted multi-step Runge-Kutta methods for solving oscillatory initial value problems, Numerical Algorithms, 76 (2017) 237-258.(SCI)
[7]Jiyong Li*, Xianfen Wang, Multi-step Runge–Kutta–Nyström methods for special second-order initial value problems, Applied Numerical Mathematics, 113 (2017) 54–70. (SCI)
[6]Jiyong Li*, A family of improved Falkner-type methods for oscillatory systems, Applied Mathematics and Computation, 293 (2017) 345–357. (SCI)
[5]Jiyong Li*, Xianfen Wang, Multi-step hybrid methods for special second-order differential equations y''(t)=f (t,y(t)), Numerical Algorithms, 73 (2016) 711-733.(SCI)
[4]Jiyong Li,Xinyuan Wu*, Error analysis of explicit TSERKN methods for highlyoscillatory systems, Numerical Algorithms 65 (2014) 465–483. (SCI)
[3]Jiyong Li, Xinyuan Wu*, Adapted Falkner-type methods solving oscillatory second- order differential equations, Numerical Algorithms, 62 (2013) 355–381. (SCI)
[2]Jiyong Li, Bin Wang, Xiong You, Xinyuan Wu*, Two-step extended RKN methods for oscillatory systems, Computer Physics Communications 182 (2011) 2486–2507. (SCI)
[1] Xinyuan Wu*, Xiong You,Jiyong Li, Note on derivation of order conditions for ARKN methods for perturbed oscillators, Computer Physics Communications 180 (2009) 1545–1549. (SCI)

相關詞條

熱門詞條

聯絡我們